scholarly journals Chaotic grey wolf optimization algorithm for constrained optimization problems

2017 ◽  
Vol 5 (4) ◽  
pp. 458-472 ◽  
Author(s):  
Mehak Kohli ◽  
Sankalap Arora

Abstract The Grey Wolf Optimizer (GWO) algorithm is a novel meta-heuristic, inspired from the social hunting behavior of grey wolves. This paper introduces the chaos theory into the GWO algorithm with the aim of accelerating its global convergence speed. Firstly, detailed studies are carried out on thirteen standard constrained benchmark problems with ten different chaotic maps to find out the most efficient one. Then, the chaotic GWO is compared with the traditional GWO and some other popular meta-heuristics viz. Firefly Algorithm, Flower Pollination Algorithm and Particle Swarm Optimization algorithm. The performance of the CGWO algorithm is also validated using five constrained engineering design problems. The results showed that with an appropriate chaotic map, CGWO can clearly outperform standard GWO, with very good performance in comparison with other algorithms and in application to constrained optimization problems. Highlights Chaos has been introduced to the GWO to develop Chaotic GWO for global optimization. Ten chaotic maps have been investigated to tune the key parameter ‘a’, of GWO. Effectiveness of the algorithm is tested on many constrained benchmark functions. Results show CGWO's better performance over other nature-inspired optimization methods. The proposed CGWO is also used for some engineering design applications.

Author(s):  
Igor A. Ostanin ◽  
Denis N. Zorin ◽  
Ivan V. Oseledets

AbstractWide variety of engineering design problems can be formulated as constrained optimization problems where the shape and topology of the domain are optimized to reduce costs while satisfying certain constraints. Several mathematical approaches were developed to address the problem of finding optimal design of an engineered structure. Recent works [


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 250 ◽  
Author(s):  
Umesh Balande ◽  
Deepti Shrimankar

Firefly-Algorithm (FA) is an eminent nature-inspired swarm-based technique for solving numerous real world global optimization problems. This paper presents an overview of the constraint handling techniques. It also includes a hybrid algorithm, namely the Stochastic Ranking with Improved Firefly Algorithm (SRIFA) for solving constrained real-world engineering optimization problems. The stochastic ranking approach is broadly used to maintain balance between penalty and fitness functions. FA is extensively used due to its faster convergence than other metaheuristic algorithms. The basic FA is modified by incorporating opposite-based learning and random-scale factor to improve the diversity and performance. Furthermore, SRIFA uses feasibility based rules to maintain balance between penalty and objective functions. SRIFA is experimented to optimize 24 CEC 2006 standard functions and five well-known engineering constrained-optimization design problems from the literature to evaluate and analyze the effectiveness of SRIFA. It can be seen that the overall computational results of SRIFA are better than those of the basic FA. Statistical outcomes of the SRIFA are significantly superior compared to the other evolutionary algorithms and engineering design problems in its performance, quality and efficiency.


Sign in / Sign up

Export Citation Format

Share Document