scholarly journals Solution of combined economic and emission dispatch problem using a novel chaotic improved harmony search algorithm

2018 ◽  
Vol 6 (3) ◽  
pp. 447-467 ◽  
Author(s):  
Hamid Rezaie ◽  
M.H. Kazemi-Rahbar ◽  
Behrooz Vahidi ◽  
Hasan Rastegar

Abstract This paper presents a new optimization technique developed based on harmony search algorithm (HSA), called chaotic improved harmony search algorithm (CIHSA). In the proposed algorithm, the original HSA is improved using several innovative modifications in the optimization procedure such as using chaotic patterns instead of uniform distribution to generate random numbers, dynamically tuning the algorithm parameters, and employing virtual harmony memories. Also, a novel type of local optimization is introduced and employed in the algorithm procedure. Applying these modifications to HSA has resulted in enhancing the robustness, accuracy and search efficiency of the algorithm, and significantly reducing the iterations number required to achieve the optimal solution. To validate the effectiveness of CIHSA, it is used to solve the combined economic emission dispatch (CEED) problem, which practically is a complex high-dimensional non-convex optimization task with several equality and inequality constraints. Six test systems having 6, 10, 13, 14, 40, and 140 generators are investigated in this study, and the valve-point loading effects, ramp rate limits and power transmission losses are also taken into account. The results obtained by CIHSA are compared with the results reported in a large number of other research works. Furthermore, the statistical data regarding the CIHSA performance in all test systems is presented. The numerical and statistical results confirm the high quality of the solutions found by CIHSA and its superiority compared to other existing techniques employed in solving CEED problems. Highlights An innovative and strong optimization technique based on harmony search is proposed. The proposed algorithm is tested on solving economic emission dispatch problem. It has the potential to be applied to many other engineering optimization problems. Six test systems considering valve point effect and transmission losses are studied. High quality solutions are obtained and compared with a large number of other methods.

Author(s):  
Erwin Erwin ◽  
Saparudin Saparudin ◽  
Wulandari Saputri

This paper proposes a new method for image segmentation is hybrid multilevel thresholding and improved harmony search algorithm. Improved harmony search algorithm which is a method for finding vector solutions by increasing its accuracy. The proposed method looks for a random candidate solution, then its quality is evaluated through the Otsu objective function. Furthermore, the operator continues to evolve the solution candidate circuit until the optimal solution is found. The dataset used in this study is the retina dataset, tongue, lenna, baboon, and cameraman. The experimental results show that this method produces the high performance as seen from peak signal-to-noise ratio analysis (PNSR). The PNSR result for retinal image averaged 40.342 dB while for the average tongue image 35.340 dB. For lenna, baboon and cameramen produce an average of 33.781 dB, 33.499 dB, and 34.869 dB. Furthermore, the process of object recognition and identification is expected to use this method to produce a high degree of accuracy.


2009 ◽  
Vol 95 (4) ◽  
pp. 401-426 ◽  
Author(s):  
Prithwish Chakraborty, ◽  
Gourab Ghosh Roy ◽  
Swagatam Das ◽  
Dhaval Jain ◽  
Ajith Abraham

2013 ◽  
Vol 415 ◽  
pp. 353-356 ◽  
Author(s):  
Hong Gang Xia ◽  
Qing Liang Wang

Harmony search (HS) algorithm is a good meta-heuristic intelligent optimization method and it does depend on imitating the music improvisation process to generate a perfect state of harmony. However, intelligent optimization methods is easily trapped into local optimal, HS is no exception. In order to improve the performance of HS, a new variant of harmony search algorithm is proposed in this paper. The variant introduce a new crossover operation into HS, and design a strategy to adjust parameter pitch adjusting rate (PAR) and bandwidth (BW). Several standard benchmarks carried out to be tested. The numerical results demonstrated that the superiority of the proposed method to the HS and recently developed variants (IHS, and GHS).


Sign in / Sign up

Export Citation Format

Share Document