scholarly journals Daily forecast of solar thermal energy production for heat storage management

2016 ◽  
Vol 139 ◽  
pp. 86-98 ◽  
Author(s):  
Sylvain Rodat ◽  
Christian Tantolin ◽  
Xavier Le Pivert ◽  
Sylvain Lespinats
Author(s):  
Abdul Mosaur Waseel ◽  
Najib Rahman Sabory ◽  
Hameedullah Zaheb ◽  
Abdul Kareem Waseel

Production of required thermal energy to heat residential buildings is a considerable issue in energy studies. Kabul city is a city in which the coal-fired central heating systems for providing the mentioned energy is in expansion process. And, coal as feeding source of these systems with generation of carbon dioxide (CO2) is the main cause of greenhouse gases (GHGs) emissions in winter. Fortunately, Kabul city has maximum solar radiation in summer warm season which can be used for fulfilling of this demand in winter cold season. The method which can perform this task is the central heating by seasonal sensible heat storage of solar thermal energy. But, the economic and environmental feasibility and viability of this method is a discussable issue. In this study, the central heating by seasonal sensible heat storage of solar thermal energy and its economic and environmental feasibility and viability is studied. It is tried that this system is compared in a logical method with current coal-fired systems. The economic feasibility study is accomplished by comparison of initial or capital cost and annual operation and maintenance cost with the usage of existing data and thermodynamic analytic methods. The environmental viability study is accomplished by comparison of annual emissions of CO2 with the usage of online emissions calculator. Unfortunately, it is found that seasonal sensible heat storage of solar thermal energy is not an economically feasible method for central heating due to its high initial cost and cannot be used in an economically beneficial manner for central heating. But fortunately, it is an environmentally viable method and environmentally friendly way due to its no and/or zero CO2 emissions. To sum up, it is suggested that, this method should be used for district heating which can make this system economically feasible.


2020 ◽  
Vol 307 ◽  
pp. 297-303
Author(s):  
Nadhrah Md Yatim ◽  
Siti Rahmah Md Nizar ◽  
Mohd Azman Hashim@Ismail ◽  
Syahida Suhaimi

Solar thermal energy is one of the promising renewable and sustainable energy that have gain research interest. However, the nature of intermittent solar irradiation limits the usage of this energy. Phase change material (PCM) are substance that has the property of absorbing and releasing thermal energy through phase transformation. Combination of graphene foam/PCM composite will be able to absorb heat from solar thermal energy and sustain energy release to thermoelectric generator (TEG) for electrical conversion. Two different PCM material were tested which are petroleum-based paraffin wax and bio-based PCM beeswax. Thermal properties of both materials were measured using DSC and heat absorption were tested under real solar irradiation. This solar-thermal converter showed that graphene/paraffin/beeswax composite is more effective than the paraffin wax or beeswax alone. The recorded results also showed that combination of these petroleum based and bio-based PCM with added graphene foam could retain longer heat than graphene/paraffin wax and individual PCM. The longer heat can be stored in solar-thermal converter device may sustain electricity generation even with absence of solar energy.


Author(s):  
Eusébio Conceição ◽  
Ma Inês Conceição ◽  
Ma Manuela Lúcio ◽  
João Gomes ◽  
André Ramos ◽  
...  

2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 120096
Author(s):  
Hongjuan Hou ◽  
Qiongjie Du ◽  
Chang Huang ◽  
Le Zhang ◽  
Eric Hu

Sign in / Sign up

Export Citation Format

Share Document