human comfort
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 118)

H-INDEX

24
(FIVE YEARS 4)

MAUSAM ◽  
2021 ◽  
Vol 42 (1) ◽  
pp. 105-107
Author(s):  
T. R. SIVARAMAKRISHNAN ◽  
P. S. PRAKASH RAO
Keyword(s):  

2021 ◽  
pp. 107754632110576
Author(s):  
Ziyu Tao ◽  
Chao Zou ◽  
Yimin Wang ◽  
Jie Wu

Train-induced feelable vibrations can bring side effects to people living or working in the building, as well as to operation of precise equipment. As massive construction of over-track buildings above metro depots prevails in megacities, impacts from train-induced feelable vibration take more concern. Four standard-designed 4-story steel-framed offices above the throat area in the Qianhai metro depot in Shenzhen, China, are studied in this research. The field measurements were conducted to investigate the influences of track alignment and track location in the throat area on vibration responses of over-track buildings. Detailed vibration analyses using the finite element method have been conducted. Train-induced floor vibration assessments on human comfort are carried out based on a total of 54 train pass-bys operated in the morning and evening and on different tracks. It can be found that the track alignment primarily affected the higher frequency components of train-induced vibrations, where curved trackinduced vibrations have larger amplitudes. The variance of train-induced building vibrations among pass-bys on different track locations was reduced compared with that of ground vibrations because of the averaging effects caused by multiple transmitting paths within the massive platform and stiff transfer structures. Train-induced acceleration levels at mid-floor can be 20–25 dB larger than those near columns at floor resonance frequencies which are dependent on the structural design. This research gives a comprehensive insight into train-induced vibrations within low-rise steel-framed buildings above the throat area in the metro depot, which is a valuable reference for assessments before the construction of future similar over-track communities.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Chiara Bedon ◽  
Silvana Mattei

In engineering applications, human comfort fulfillment is challenging because it depends on several aspects that can be mathematically controlled and optimized, like in case of structural, energy, or thermal issues, and others. Major troubles can indeed derive from combined human reactions, which are related to a multitude of aspects. The so-called “emotional architecture” and its nervous feelings are part of the issue. The interaction of objective and subjective parameters can thus make the “optimal” building design complex. This paper presents a pilot experimental investigation developed remotely to quantify the reactions and nervous states of 10 volunteers exposed to structural glass environments. As known, intrinsic material features (transparency, brittleness, etc.) require specific engineering knowledge for safe mechanical design but can in any case evoke severe subjective feelings for customers, thus affecting their psychological comfort and hence behaviour and movements. This study takes advantage of static/dynamic Virtual Reality (VR) environments and facial expression analyses, with Artificial Intelligence tools that are used to measure both Action Units (AUs) of facial microexpressions and optical heart rate (HR) acquisitions of volunteers exposed to VR scenarios. As shown, within the limits of collected records, the postprocessing analysis of measured signals proves that a rather good correlation can be found for measured AUs, HR data trends, and emotions under various glazing stimuli. Such a remote experimental approach could be thus exploited to support the early design stage of structural glass members and assemblies in buildings.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Majo Carrasco-Tenezaca ◽  
Ebrima Jatta ◽  
Musa Jawara ◽  
John Bradley ◽  
Margaret Pinder ◽  
...  

Abstract Background In rural sub-Saharan Africa, thatch roofs are being replaced by metal roofs. Metal roofing, however, increases indoor temperatures above human comfort levels, and thus makes it more likely that residents will not use an insecticide-treated bed net (ITN) at night. Whether the colour of a metal roof affects indoor temperature and human comfort was assessed. Methods Two identical, experimental houses were constructed with metal roofs in rural Gambia. Roof types were: (1) original bare-metal, (2) painted with red oxide primer or (3) white gloss, to reflect solar radiation. Pairwise comparisons were run in six, five-night blocks during the malaria season 2018. Indoor climate was measured in each house and multivariate analysis used to compare indoor temperatures during the day and night. Results From 21.00 to 23.59 h, when most residents decide whether to use an ITN or not, the indoor temperature of a house with a bare metal roof was 31.5 °C (95% CI  31.2–31.8 °C), a red roof, 30.3 °C (95% CI 30.0–30.6) and a white roof, 29.8 °C (95% CI 29.4–30.1). During the same period, red-roofed houses were 1.23 °C cooler (95% CI 1.22–1.23) and white roofs 1.74 °C cooler (95% CI 1.70–1.79) than bare-metal roofed houses (p  < 0.001). Similar results were found from 00.00 to 06.00 h. Maximum daily temperatures were 0.93 °C lower in a white-roofed house (95% CI  0.10–0.30, p  < 0.001), but not a red roof (mean maximum temperature difference  = 0.44 °C warmer, 95% CI  0.43–0.45, p  = 0.081), compared with the bare-metal roofed houses. Human comfort analysis showed that from 21.00 to 23.59 h houses with white roofs (comfortable for 87% time) were more comfortable than bare-metal roofed houses (comfortable for 13% time; odds ratio  = 43.7, 95% CI 27.5–69.5, p  < 0.001). The cost of painting a metal roof white is approximately 31–68 USD. Conclusions Houses with a white roof were consistently cooler and more comfortable than those with a bare metal roof. Painting the roofs of houses white is a cheap way of making a dwelling more comfortable for the occupants and could potentially increase bed net use in hot humid countries.


2021 ◽  
Vol 149 ◽  
pp. 111359
Author(s):  
A.L. Pisello ◽  
I. Pigliautile ◽  
M. Andargie ◽  
C. Berger ◽  
P.M. Bluyssen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document