On the advantages of the new power-split infinitely variable transmission over conventional mechanical transmissions based on fuel consumption analysis

2020 ◽  
Vol 244 ◽  
pp. 118795 ◽  
Author(s):  
Ender İnce ◽  
Mehmet A. Güler
2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Ender İnce ◽  
Mehmet A. Güler

In the last few decades, power-split infinitely variable transmission (IVT) systems have attracted considerable attention as they ensure high driving comfort with high total efficiencies, especially in off-highway vehicles and agricultural machines. In this study, a novel power-split-input-coupled IVT system is developed. The effects of various dynamic parameters such as power flow and Willis transmission ratio on the mechanical efficiency of the systems are investigated. Kinematic analysis of the new system has been carried out. In addition power flow equations are derived as functions of the power that flows through the infinitely variable unit (IVU). The results indicate that the main parameters, which are strictly related to mechanical efficiency are the power and torque flows through the IVU.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
S. Schembri Volpe ◽  
G. Carbone ◽  
M. Napolitano ◽  
E. Sedoni

The authors present an optimization procedure in designing infinitely variable transmission architectures, which allows them to achieve a significant reduction in power recirculation and, hence, an increase in mechanical efficiency. The focus of this paper is on infinitely variable transmissions used in off-highway vehicles and, in particular, on input and output coupled architectures. The optimized solutions have been analyzed in depth, with particular attention to the power flowing through the infinitely variable unit, which strongly influences the overall efficiency of the transmission. The major result of this study is that the so far neglected output coupled solution, if properly optimized, guarantees very good performance over the entire range of vehicle speed. The analysis then shows that the particular choice of either input or output coupled architecture by itself, or of a mixed solution, strictly depends on the specific application under consideration and that none of them should be discarded a priori.


Author(s):  
A. F. McLean

This paper reviews gas turbine cycles most favoured for vehicular use. It suggests the single-shaft turbine engine as a possible contender for a lower cost approach, where fuel economy requirements are not met by complexity of cycle but by operation at higher turbine inlet temperatures. The question, ‘Where does the engine end and the transmission begin?’ is discussed, and an example of an infinitely variable transmission is explored as a means for overcoming the performance deficiencies of the single-shaft machine. The paper examines the advantages and disadvantages of this type of turbine engine with respect to acceleration and torque characteristics, fuel consumption, engine braking, initial cost, and design for simplicity and high temperature.


Author(s):  
Mateus Bertolin ◽  
Andrea Vacca

Abstract This paper proposes a novel hybrid power-split transmission to drive hydraulic implements in construction machinery. The highly efficient power-split hybrid transmission is combined with displacement controlled (DC) actuators to eliminate throttling losses within the hydraulic system and achieve higher fuel savings. The architecture design, sizing and power management are addressed. Simulation results considering a realistic truck-loading cycle on a mini excavator demonstrate the feasibility of the idea. A systematic comparison between the proposed system and the previously developed series-parallel hybrid is also carried out. The paper compares engine operation and fuel consumption of the previously mentioned hybrid system with the original non-hybrid load-sensing machine. It is shown that by implementing an efficient engine operation control, the proposed system can achieve up to 60.2% improvement in fuel consumption when compared to the original machine and consume 11.8% less than the previously developed series-parallel hybrid with DC actuation. Other advantages of the proposed solution include a much steadier engine operation, which opens to the possibility of designing an engine for optimal consumption and emissions at a single operating point as well as greatly reduce pollutant emissions. A steadier prime mover operation should also benefit fully electric machines, as the battery would not be stressed with heavy transients.


Sign in / Sign up

Export Citation Format

Share Document