scholarly journals Simulation of cam-based infinitely variable transmission

2021 ◽  
Vol 1067 (1) ◽  
pp. 012110
Author(s):  
M Faleh ◽  
A Al-Hamood ◽  
M H Majeed
2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Ender İnce ◽  
Mehmet A. Güler

In the last few decades, power-split infinitely variable transmission (IVT) systems have attracted considerable attention as they ensure high driving comfort with high total efficiencies, especially in off-highway vehicles and agricultural machines. In this study, a novel power-split-input-coupled IVT system is developed. The effects of various dynamic parameters such as power flow and Willis transmission ratio on the mechanical efficiency of the systems are investigated. Kinematic analysis of the new system has been carried out. In addition power flow equations are derived as functions of the power that flows through the infinitely variable unit (IVU). The results indicate that the main parameters, which are strictly related to mechanical efficiency are the power and torque flows through the IVU.


2004 ◽  
Vol 126 (4) ◽  
pp. 673-682 ◽  
Author(s):  
F. G. Benitez ◽  
J. M. Madrigal ◽  
J. M. del Castillo

An infinitely variable transmission (IVT), based on the use of one-way action clutches, belonging to the family of ratcheting drives is described. The mechanical foundations and numerical simulations carried out along this research envisage a plausible approach to its use as gear-box in general mechanical industry and its prospective use in automobiles and self-propelled vehicles. The system includes one-way clutches—free wheels or overrunning clutches—and two epicyclic gear systems. The output velocity, with oscillatory character, common to the ratcheting drives systems, presents a period similar to that produced by alternative combustion motors, making this transmission compatible with automobile applications. The variation of the transmission is linear in all the working range. The kinematics operating principles behind this IVT is described followed by a numerical simulation of the dynamic analysis. A prototype has been constructed and tested to assess its mechanical efficiency for different reduction ratios. The efficiency values predicted by theory agree with those experimentally obtained on a bench-rig testing equipment.


Author(s):  
Derek F. Lahr ◽  
Dennis W. Hong

The Cam-based Infinitely Variable Transmission (IVT) is a new type of ratcheting IVT based on a three dimensional cam and follower system which provides unique characteristics such as generating specific functional speed ratio outputs including dwells, for a constant velocity input. This paper presents several mechanisms and design approaches used to improve the torque and speed capacity of this unique transmission. A compact, lightweight, and capable differential mechanism based on a cord and pulley system is developed to double the number of followers in contact with the cam at any time, thereby reducing the contact stress between the followers and the cam surface considerably. A kinematic model governing the motion of this differential is developed and a few experimental results from the prototype are presented, showing an overall increase in performance including a smooth output, a wide gear range, and the ability to shift under load. Plans for future improvements to the design, including an inverted external cam mechanism, is also presented along with the expected performance gains.


Author(s):  
Guan-Shyong Hwang ◽  
Der-Min Tsay ◽  
Jao-Hwa Kuang ◽  
Tzuen-Lih Chern ◽  
Tsu-Chi Kuo

This study proposes a design of transmission mechanism which is referred to as a series-type independently controllable transmission (ICT). The series-type ICT is an alternative form of the parallel-types proposed in the former researches. The series-type ICT can serve as a continuously or an infinitely variable transmission mechanism, and it can also produce a required angular output velocity that can be independently manipulated by a controller and not affected by the angular velocity of the input shaft. The series-type ICT mechanism is composed of two planetary gear trains and two transmission-connecting members. Kinematic and dynamic characteristics of the ICT mechanism are analyzed and their analytical equations are derived for application in this study.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
S. Schembri Volpe ◽  
G. Carbone ◽  
M. Napolitano ◽  
E. Sedoni

The authors present an optimization procedure in designing infinitely variable transmission architectures, which allows them to achieve a significant reduction in power recirculation and, hence, an increase in mechanical efficiency. The focus of this paper is on infinitely variable transmissions used in off-highway vehicles and, in particular, on input and output coupled architectures. The optimized solutions have been analyzed in depth, with particular attention to the power flowing through the infinitely variable unit, which strongly influences the overall efficiency of the transmission. The major result of this study is that the so far neglected output coupled solution, if properly optimized, guarantees very good performance over the entire range of vehicle speed. The analysis then shows that the particular choice of either input or output coupled architecture by itself, or of a mixed solution, strictly depends on the specific application under consideration and that none of them should be discarded a priori.


Author(s):  
A. F. McLean

This paper reviews gas turbine cycles most favoured for vehicular use. It suggests the single-shaft turbine engine as a possible contender for a lower cost approach, where fuel economy requirements are not met by complexity of cycle but by operation at higher turbine inlet temperatures. The question, ‘Where does the engine end and the transmission begin?’ is discussed, and an example of an infinitely variable transmission is explored as a means for overcoming the performance deficiencies of the single-shaft machine. The paper examines the advantages and disadvantages of this type of turbine engine with respect to acceleration and torque characteristics, fuel consumption, engine braking, initial cost, and design for simplicity and high temperature.


Sign in / Sign up

Export Citation Format

Share Document