Integrated linguistic entropy weight method and multi-objective programming model for supplier selection and order allocation in a circular economy: A case study

2020 ◽  
Vol 277 ◽  
pp. 122597 ◽  
Author(s):  
Jianghong Feng ◽  
Zongrong Gong
Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 302 ◽  
Author(s):  
Shan-Yong You ◽  
Li-Jun Zhang ◽  
Xue-Guo Xu ◽  
Hu-Chen Liu

With the increasing pressure from global competition, manufacturers have realized that sustainable production is significant in supply chain management. Sustainable supplier selection and order allocation (SSS&OA) play a distinct and critical role for organizations to achieve sustainable development and build competitive advantage. In this paper, we aim to develop a novel SSS&OA model for selecting the most suitable sustainable suppliers and determining the optimal order sizes among them. First, double hierarchy hesitant linguistic term sets (DHHLTSs) are adopted to deal with uncertainty in evaluating the sustainable performance of alternative suppliers. Then, an extended decision field theory is proposed to choose efficient sustainable suppliers dynamically. Considering quantity discount, a multi-objective linear programming (MOLP) model is established to allocate reasonable order quantities among the selected suppliers. Finally, the applicability and effectiveness of the developed model are illustrated through its application in the electronic industry and through a comparative analysis with other methods.


2021 ◽  
Author(s):  
Lei Guo ◽  
Xiufen ZHANG

Abstract Partial destructive disassembly (PDD) is essential for end-of-life products to improve their automatic disassembly efficiency and reduce disassembly cost. A feasibility evaluation of the PDD is the key step to evaluate whether the PDD can be implemented. However, it has not been studied previously to our knowledge. To deal with this problem, a multi-granularity feasibility evaluation method is proposed. A multi-granularity feasibility evaluation model of the PDD was constructed based on the complex product’s hierarchical structure, which not only described the evaluation indices from the product level to the component level but also presented methods and rules to quantify them. 1Thus, disassembly entropy was introduced into the target group’s coarse granularity evaluation. The feasibility of the fine-grained index of the PDD for the component layer was constructed based on the product’s failure characteristic. The fine-grained index was calculated by the fuzzy trigonometric function and its weighting was obtained based on the structure entropy weight method. Thus, the results of the evaluation were used as feedback to guide the PDD process. Finally, a Passat engine case study illustrates the feasibility and effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document