Myocardial Stiffness by Cardiac Elastography in Hypertrophic Cardiomyopathy

Author(s):  
Jwan A. Naser ◽  
Orawan Anupraiwan ◽  
Rosalyn O. Adigun ◽  
Joseph J. Maleszewski ◽  
Sorin V. Pislaru ◽  
...  
2013 ◽  
Vol 305 (4) ◽  
pp. H575-H589 ◽  
Author(s):  
Katarzyna Kazmierczak ◽  
Ellena C. Paulino ◽  
Wenrui Huang ◽  
Priya Muthu ◽  
Jingsheng Liang ◽  
...  

The functional consequences of the familial hypertrophic cardiomyopathy A57G (alanine-to-glycine) mutation in the myosin ventricular essential light chain (ELC) were assessed in vitro and in vivo using previously generated transgenic (Tg) mice expressing A57G-ELC mutant vs. wild-type (WT) of human cardiac ELC and in recombinant A57G- or WT-protein-exchanged porcine cardiac muscle strips. Compared with the Tg-WT, there was a significant increase in the Ca2+ sensitivity of force (ΔpCa50 ≅ 0.1) and an ∼1.3-fold decrease in maximal force per cross section of muscle observed in the mutant preparations. In addition, a significant increase in passive tension in response to stretch was monitored in Tg-A57G vs. Tg-WT strips indicating a mutation-induced myocardial stiffness. Consistently, the hearts of Tg-A57G mice demonstrated a high level of fibrosis and hypertrophy manifested by increased heart weight-to-body weight ratios and a decreased number of nuclei indicating an increase in the two-dimensional size of Tg-A57G vs. Tg-WT myocytes. Echocardiography examination showed a phenotype of eccentric hypertrophy in Tg-A57G mice, enhanced left ventricular (LV) cavity dimension without changes in LV posterior/anterior wall thickness. Invasive hemodynamics data revealed significantly increased end-systolic elastance, defined by the slope of the pressure-volume relationship, indicating a mutation-induced increase in cardiac contractility. Our results suggest that the A57G allele causes disease by means of a discrete modulation of myofilament function, increased Ca2+ sensitivity, and decreased maximal tension followed by compensatory hypertrophy and enhanced contractility. These and other contributing factors such as increased myocardial stiffness and fibrosis most likely activate cardiomyopathic signaling pathways leading to pathologic cardiac remodeling.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Cvijic ◽  
S Bezy ◽  
A Petrescu ◽  
P Santos ◽  
M Orlowska ◽  
...  

Abstract Background Recently, cardiac shear wave (SW) elastography, based on high frame rate (HFR) echocardiography, has been proposed as new non-invasive technique for assessing myocardial stiffness. As myocardial stiffness increases with increasing wall stress, differences in measured operating myocardial stiffness do not necessarily reflect differences in intrinsic myocardial properties, but can also be caused by mere changes in loading or chamber geometry. This complicates myocardial stiffness interpretation for different types of pathologic hypertrophy. Purpose To explore the relationship between myocardial stiffness and underlying pathological substrates for cardiac hypertrophy. Methods We included 20 patients with hypertension (HT) and myocardial remodelling (59±14 years, 75% male), 20 patients with hypertrophic cardiomyopathy (HCM) (59±16 years, 60% male) and 20 healthy controls (56±14 years, 75% male). Left ventricular (LV) parasternal long axis views were acquired with an experimental HFR scanner at 1293±362 frames per seconds. Propagation velocity of SW occurring after mitral valve closure in the interventricular septum (IVS) served as measure of operating myocardial stiffness (Figure A). To compare myocardial stiffness among hearts with differing loading conditions and chamber geometry, SW velocities were normalized to end-diastolic wall stress, estimated at IVS from regional wall thickness, longitudinal and circumferential regional radii of curvature, and non-invasively estimated LV end-diastolic pressure (EDP). Results SW velocities differed significantly between groups (p<0.001). The controls had the lowest SW velocities (4.02±0.97 m/s), whereas values between HT and HCM group were comparable (6.46±0.99 m/s vs. 7.00±2.10 m/s; p=0.738). Considering end-diastolic wall stress, HCM patients had the same SW velocity at lower wall stress compared to HT (Figure B), indicating higher myocardial stiffness in the HCM group. SW velocities normalized for wall stress indicated significantly different myocardial stiffness among all groups (p<0.001) (Figure C). In a multiple linear regression model, the underlying pathological substrate independently influenced SW velocity (beta 1.37, 95% CI (0.78–1.96); p<0.001), while wall stress did not significantly affect its value (p=0.479). Conclusions Our study demonstrated that SW elastography can detect differences in myocardial stiffness in hypertensive heart and hypertrophic cardiomyopathy. Additionally, our results suggest that SW velocity is dominated by underlying myocardial tissue properties. We hypothesize that differential changes in cardiomyocytes and/or the extracellular matrix contribute to the differential myocardial stiffening in different pathologic entities of LV hypertrophy. Thus, SW elastography could provide useful novel diagnostic information in the evaluation of LV hypertrophy. Figure A, B, C Funding Acknowledgement Type of funding source: None


2018 ◽  
Vol 11 (5) ◽  
pp. 779-781 ◽  
Author(s):  
Olivier Villemain ◽  
Mafalda Correia ◽  
Diala Khraiche ◽  
Ilya Podetti ◽  
Mathilde Meot ◽  
...  

1999 ◽  
Vol 1 ◽  
pp. S107-S107
Author(s):  
S SEVERINO ◽  
P CASO ◽  
M GALDERISI ◽  
S CICALA ◽  
A DANDREA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document