Multidimensional Riemann problem with self-similar internal structure. Part II – Application to hyperbolic conservation laws on unstructured meshes

2015 ◽  
Vol 287 ◽  
pp. 269-292 ◽  
Author(s):  
Dinshaw S. Balsara ◽  
Michael Dumbser
Author(s):  
Changjiang Zhu

In this paper we prove the global existence of the solutions of the Riemann problem for a class of 2 × 2 hyperbolic conservation laws, which is neither necessarily strictly hyperbolic nor necessarily genuinely nonlinear.


2014 ◽  
Vol 16 (3) ◽  
pp. 718-763 ◽  
Author(s):  
Raphaël Loubère ◽  
Michael Dumbser ◽  
Steven Diot

AbstractIn this paper, we investigate the coupling of the Multi-dimensional Optimal Order Detection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions witha posterioridetection and polynomial degree decrementing processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but it also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements.


A numerical technique, called a ‘weighted average flux’ (WAF) method, for the solution of initial-value problems for hyperbolic conservation laws is presented. The intercell fluxes are defined by a weighted average through the complete structure of the solution of the relevant Riemann problem. The aim in this definition is the achievement of higher accuracy without the need for solving ‘generalized’ Riemann problems or adding an anti-diffusive term to a given first-order upwind method. Second-order accuracy is proved for a model equation in one space dimension; for nonlinear systems second-order accuracy is supported by numerical evidence. An oscillation-free formulation of the method is easily constructed for a model equation. Applications of the modified technique to scalar equations and nonlinear systems gives results of a quality comparable with those obtained by existing good high resolution methods. An advantage of the present method is its simplicity. It also has the potential for efficiency, because it is well suited to the use of approximations in the solution of the associated Riemann problem. Application of WAF to multidimensional problems is illustrated by the treatment using dimensional splitting of a simple model problem in two dimensions.


Sign in / Sign up

Export Citation Format

Share Document