scholarly journals On conservation and dual consistency for summation-by-parts based approximations of parabolic problems

2020 ◽  
Vol 410 ◽  
pp. 109282
Author(s):  
Fatemeh Ghasemi ◽  
Jan Nordström

2017 ◽  
Vol 344 ◽  
pp. 437-439 ◽  
Author(s):  
Jan Nordström ◽  
Fatemeh Ghasemi




2020 ◽  
Vol 20 (2) ◽  
pp. 253-276
Author(s):  
Julián López-Gómez

AbstractThis paper characterizes whether or not\Sigma_{\infty}\equiv\lim_{\lambda\uparrow\infty}\sigma[\mathcal{P}+\lambda m(% x,t),\mathfrak{B},Q_{T}]is finite, where {m\gneq 0} is T-periodic and {\sigma[\mathcal{P}+\lambda m(x,t),\mathfrak{B},Q_{T}]} stands for the principal eigenvalue of the parabolic operator {\mathcal{P}+\lambda m(x,t)} in {Q_{T}\equiv\Omega\times[0,T]} subject to a general boundary operator of mixed type, {\mathfrak{B}}, on {\partial\Omega\times[0,T]}. Then this result is applied to discuss the nature of the territorial refuges in periodic competitive environments.



2020 ◽  
Vol 28 (6) ◽  
pp. 797-814
Author(s):  
Elena-Alexandra Melnig

AbstractWe consider systems of parabolic equations coupled in zero and first order terms. We establish Lipschitz estimates in {L^{q}}-norms, {2\leq q\leq\infty}, for the source in terms of the solution in a subdomain. The main tool is a family of appropriate Carleman estimates with general weights, in Lebesgue spaces, for nonhomogeneous parabolic systems.



Sign in / Sign up

Export Citation Format

Share Document