laplace transform method
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 53)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Vol 11 (24) ◽  
pp. 11774
Author(s):  
Bin Zhen ◽  
Ran Liu

In this paper, a new method is proposed based on the auxiliary system approach to investigate generalized synchronization between two identical neurons with unidirectional coupling. Different from other studies, the synchronization error system between the response and auxiliary systems is converted into a set of Volterra integral equations according to the Laplace transform method and convolution theorem. By using the successive approximation method in the theory of integral equations, an analytical criterion for the detection of generalized synchronization between two identical neurons is obtained. It is found that there is a time difference between two signals of neurons when the generalized synchronization between them is achieved. Furthermore, the value of the time difference has no relation to the generalized synchronization condition but depends on the coupling function between two neurons. The study in this paper shows that one can construct a coupling function between two identical neurons using the current signal of the drive system to predict its future signal or make its past signal reappear.


Author(s):  
Abubakar Terrang ◽  
◽  
Awumtiya Isa ◽  
Felix Bakare ◽  
Patience Iliya ◽  
...  

This study aimed at solving a nonhomogeneous linear first order initial value problem by means of Laplace transform method in fuzzy environment. The conditions for a fuzzy function to be H−differentiable and gH−differentiability are well established. Finally, example is constructed to test the applicability or otherwise of the established results.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Javed Iqbal ◽  
Khurram Shabbir ◽  
Liliana Guran

In this work, we combined two techniques, the variational iteration technique and the Laplace transform method, in order to solve some nonlinear-time fractional partial differential equations. Although the exact solutions may exist, we introduced the technique VITM that approximates the solutions that are difficult to find. Even a single iteration best approximates the exact solutions. The fractional derivatives being used are in the Caputo-Fabrizio sense. The reliability and efficiency of this newly introduced method is discussed in details from its numerical results and their graphical approximations. Moreover, possible consequences of these results as an application of fixed-point theorem are placed before the experts as an open problem.


2021 ◽  
Vol 5 (3) ◽  
pp. 116
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Faraidun Kadir Hamasalh

The discrete delta Caputo-Fabrizio fractional differences and sums are proposed to distinguish their monotonicity analysis from the sense of Riemann and Caputo operators on the time scale Z. Moreover, the action of Q− operator and discrete delta Laplace transform method are also reported. Furthermore, a relationship between the discrete delta Caputo-Fabrizio-Caputo and Caputo-Fabrizio-Riemann fractional differences is also studied in detail. To better understand the dynamic behavior of the obtained monotonicity results, the fractional difference mean value theorem is derived. The idea used in this article is readily applicable to obtain monotonicity analysis of other discrete fractional operators in discrete fractional calculus.


Author(s):  
Bakhtiyar Ismailov ◽  
Zhanat Umarova ◽  
Khairulla Ismailov ◽  
Aibarsha Dosmakanbetova ◽  
Saule Meldebekova

<p>At present, when constructing a mathematical description of the pyrolysis reactor, partial differential equations for the components of the gas phase and the catalyst phase are used. In the well-known works on modeling pyrolysis, the obtained models are applicable only for a narrow range of changes in the process parameters, the geometric dimensions are considered constant. The article poses the task of creating a complex mathematical model with additional terms, taking into account nonlinear effects, where the geometric dimensions of the apparatus and operating characteristics vary over a wide range. An analytical method has been developed for the implementation of a mathematical model of catalytic pyrolysis of methane for the production of nanomaterials in a continuous mode. The differential equation for gaseous components with initial and boundary conditions of the third type is reduced to a dimensionless form with a small value of the peclet criterion with a form factor. It is shown that the laplace transform method is mainly suitable for this case, which is applicable both for differential equations for solid-phase components and calculation in a periodic mode. The adequacy of the model results with the known experimental data is checked.</p>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. Ramzan ◽  
Zaib Un Nisa ◽  
M. Ahmad ◽  
M. Nazar

Unsteady magnetohydrodynamics (MHD) flow of fractionalized Brinkman-type fluid over a vertical plate is discussed. In the model of problem, additional effects such as heat generation/absorption and chemical reaction are also considered. The model is solved by using the Caputo fractional derivative. The governing dimensionless equations for velocity, concentration, and temperature profiles are solved using the Laplace transform method and compared graphically. The effects of different parameters like fractional parameter, heat generation/absorption Q , chemical reaction R, and magnetic parameter M are discussed through numerous graphs. Furthermore, comparison among ordinary and fractionalized velocity fields are also drawn. From the figures, it is observed that chemical reaction and magnetic field have decreasing effect on velocity profile, whereas thermal radiation and mass Grashof numbers have increasing effect on the velocity of the fluid.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2021
Author(s):  
Jing Chang ◽  
Jin Zhang ◽  
Ming Cai

In the present paper, the series solutions and the approximate solutions of the time–space fractional differential equations are obtained using two different analytical methods. One is the homotopy perturbation Sumudu transform method (HPSTM), and another is the variational iteration Laplace transform method (VILTM). It is observed that the approximate solutions are very close to the exact solutions. The solutions obtained are very useful and significant to analyze many phenomena, and the solutions have not been reported in previous literature. The salient feature of this work is the graphical presentations of the third approximate solutions for different values of order α.


2021 ◽  
Vol 4 (3) ◽  
pp. 1-11
Author(s):  
Anongo D.O. ◽  
Awari Y.S.

Many problems in natural and engineering sciences such as heat transfer, elasticity, quantum mechanics, water flow, and others are modelled mathematically by partial differential equations. Some of these problems may be linear, nonlinear, homogeneous, non-homogeneous, and order greater or equal one. Finding the theoretical solution to these problems with less cumbersome techniques is an active area of research in the aforementioned field. In this research paper, we have developed a new application of the double Laplace transform method to solve homogeneous and non-homogeneous linear partial differential equations (pdes) with higher-order derivatives (i.e order n where n≥2) in science and engineering. We discussed a brief theory of double Laplace transforms that helped in its application. The main advantage of our method is the reduction of computational effort in finding solution to pdes. Another major benefit of our method is solving problems in the form of (21) directly by transforming to an algebraic equation where the inverse double Laplace transform is implemented for analytical solution, unlike other integral transform methods that would first transform to a system of ODEs before they are solved, is it also very effective in solving linear high-order partial differential equations and yield fast convergence. We present a well-simplified solution for easier comprehension by upcoming researchers.


Sign in / Sign up

Export Citation Format

Share Document