entropy solution
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 22)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
John D. Towers

<p style='text-indent:20px;'>In [Andreianov, Coclite, Donadello, Discrete Contin. Dyn. Syst. A, 2017], a finite volume scheme was introduced for computing vanishing viscosity solutions on a single-junction network, and convergence to the vanishing viscosity solution was proven. This problem models <inline-formula><tex-math id="M1">\begin{document}$ m $\end{document}</tex-math></inline-formula> incoming and <inline-formula><tex-math id="M2">\begin{document}$ n $\end{document}</tex-math></inline-formula> outgoing roads that meet at a single junction. On each road the vehicle density evolves according to a scalar conservation law, and the requirements for joining the solutions at the junction are defined via the so-called vanishing viscosity germ. The algorithm mentioned above processes the junction in an implicit manner. We propose an explicit version of the algorithm. It differs only in the way that the junction is processed. We prove that the approximations converge to the unique entropy solution of the associated Cauchy problem.</p>


2020 ◽  
Vol 66 (2) ◽  
pp. 292-313
Author(s):  
E. Yu. Panov

We consider a second-order nonlinear degenerate parabolic equation in the case when the flux vector and the nonstrictly increasing diffusion function are merely continuous. In the case of zero diffusion, this equation degenerates into a first order quasilinear equation (conservation law). It is known that in the general case under consideration an entropy solution (in the sense of Kruzhkov-Carrillo) of the Cauchy problem can be non-unique. Therefore, it is important to study special entropy solutions of the Cauchy problem and to find additional conditions on the input data of the problem that are sufficient for uniqueness. In this paper, we obtain some new results in this direction. Namely, the existence of the largest and the smallest entropy solutions of the Cauchy problem is proved. With the help of this result, the uniqueness of the entropy solution with periodic initial data is established. More generally, the comparison principle is proved for entropy suband super-solutions, in the case when at least one of the initial functions is periodic. The obtained results are generalization of the results known for conservation laws to the parabolic case.


2020 ◽  
Vol 17 (04) ◽  
pp. 765-784
Author(s):  
Shyam Sundar Ghoshal ◽  
Animesh Jana

We investigate qualitative properties of entropy solutions to hyperbolic conservation laws, and construct an entropy solution to a scalar conservation law for which the jump set is not closed, in particular, it is dense in a space-time domain. In a second part, we establish a similar result for hyperbolic systems. We give two different approaches for scalar conservation laws and hyperbolic systems in order to obtain these results. For the scalar case, the solutions are explicitly calculated.


Axioms ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 109 ◽  
Author(s):  
Omar Benslimane ◽  
Ahmed Aberqi ◽  
Jaouad Bennouna

The purpose of this work is to prove the existence and uniqueness of a class of nonlinear unilateral elliptic problem (P) in an arbitrary domain, managed by a low-order term and non-polynomial growth described by an N-uplet of N-function satisfying the Δ2-condition. The source term is merely integrable.


2020 ◽  
Vol 17 (02) ◽  
pp. 213-294
Author(s):  
Caroline Bauzet ◽  
Vincent Castel ◽  
Julia Charrier

We are interested in multi-dimensional nonlinear scalar conservation laws forced by a multiplicative stochastic noise with a general time and space dependent flux-function. We address simultaneously theoretical and numerical issues in a general framework and consider a larger class of flux functions in comparison to the one in the literature. We establish existence and uniqueness of a stochastic entropy solution together with the convergence of a finite volume scheme. The novelty of this paper is the use of a numerical approximation (instead of a viscous one) in order to get, both, the existence and the uniqueness of solutions. The quantitative bounds in our uniqueness result constitute a preliminary step toward the establishment of strong error estimates. We also provide an [Formula: see text] stability result for the stochastic entropy solution.


Sign in / Sign up

Export Citation Format

Share Document