scholarly journals An immersed interface-lattice Boltzmann method for fluid-structure interaction

2020 ◽  
pp. 109807
Author(s):  
Jianhua Qin ◽  
Ebrahim M. Kolahdouz ◽  
Boyce E. Griffith
Author(s):  
Yuan-Qing Xu ◽  
Yan-Qun Jiang ◽  
Jie Wu ◽  
Yi Sui ◽  
Fang-Bao Tian

Body-fitted and Cartesian grid methods are two typical types of numerical approaches used for modelling fluid–structure interaction problems. Despite their extensive applications, there is a lack of comparing the performance of these two types of approaches. In order to do this, the present paper presents benchmark numerical solutions for two two-dimensional fluid–structure interaction problems: flow-induced vibration of a highly flexible plate in an axial flow and a pitching flexible plate. The solutions are obtained by using two partitioned fluid–structure interaction methods including the deforming-spatial-domain/stabilized space–time fluid–structure interaction solver and the immersed boundary–lattice Boltzmann method. The deforming-spatial-domain/stabilized space–time fluid–structure interaction solver employs the body-fitted-grid deforming-spatial-domain/stabilized space–time method for the fluid motions and the finite-difference method for the structure vibrations. A new mesh update strategy is developed to prevent severe mesh distortion in cases where the boundary does not oscillate periodically or needs a long time to establish a periodic motion. The immersed boundary–lattice Boltzmann method uses lattice Boltzmann method as fluid solver and the same finite-difference method as structure solver. In addition, immersed boundary method is used in the immersed boundary–lattice Boltzmann solver to handle the fluid–structure interaction coupling. Results for the characteristic force coefficients, tail position, plate deformation pattern and the vorticity fields are presented and discussed. The present results will be useful for evaluating the performance and accuracy of existing and new numerical methodologies for fluid–structure interaction.


Author(s):  
Zhe Li ◽  
Julien Favier

This chapter presents several partitioned algorithms to couple lattice Boltzmann method (LBM) and finite element method (FEM) for numerical simulation of transient fluid-structure interaction (FSI) problems with large interface motion. Partitioned coupling strategies allow one to solve separately the fluid and solid subdomains using adapted or optimized numerical schemes, which provides a considerable flexibility for FSI simulation, especially for more realistic and industrial applications. However, partitioned coupling procedures often encounter numerical instabilities due to the fact that the time integrations of the two subdomains are usually carried out in a staggered way. As a consequence, the energy transfer across the fluid-solid interface is usually not correctly simulated, which means numerical energy injection or dissipation might occur at the interface with partitioned methods. The focus of the present chapter is given to the energy conservation property of different partitioned coupling strategies for FSI simulation.


Author(s):  
K. Karthik Selva Kumar ◽  
L. A. Kumaraswamidhas

In this chapter, a brief discussion about the application of lattice Boltzmann method on complex flow characteristics over circular structures is presented. A two-dimensional computational simulation is performed to study the fluid flow characteristics by employing the lattice Boltzmann method (LBM) with respect to Bhatnagar-Gross-Krook (BGK) collision model to simulate the interaction of fluid flow over the circular cylinders at different spacing conditions. From the results, it is observed that there is no significant interaction between the wakes for the transverse spacing's ratio higher than six times the cylinder diameter. For smaller transverse spacing ratios, the fluid flow regimes were recognized with presence of vortices. Apart from that, the drag coefficient signals are revealed as chaotic, quasi-periodic, and synchronized regimes, which were observed from the results of vortex shedding frequencies and fluid structure interaction frequencies. The strength of the latter frequency depends on spacing between the cylinders; in addition, the frequency observed from the fluid structure interaction is also associated with respect to the change in narrow and wide wakes behind the surface of the cylinder. Further, the St and mean Cd are observed to be increasing with respect to decrease in the transverse spacing ratio.


Sign in / Sign up

Export Citation Format

Share Document