relaxation times
Recently Published Documents


TOTAL DOCUMENTS

4850
(FIVE YEARS 679)

H-INDEX

102
(FIVE YEARS 11)

2022 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Shota Yamamoto ◽  
Takahiro Sanada ◽  
Mio Sakai ◽  
Atsuko Arisawa ◽  
Naoki Kagawa ◽  
...  

One of the challenges in glioblastoma (GBM) imaging is to visualize non-enhancing tumor (NET) lesions. The ratio of T1- and T2-weighted images (rT1/T2) is reported as a helpful imaging surrogate of microstructures of the brain. This research study investigated the possibility of using rT1/T2 as a surrogate for the T1- and T2-relaxation time of GBM to visualize NET effectively. The data of thirty-four histologically confirmed GBM patients whose T1-, T2- and contrast-enhanced T1-weighted MRI and 11C-methionine positron emission tomography (Met-PET) were available were collected for analysis. Two of them also underwent MR relaxometry with rT1/T2 reconstructed for all cases. Met-PET was used as ground truth with T2-FLAIR hyperintense lesion, with >1.5 in tumor-to-normal tissue ratio being NET. rT1/T2 values were compared with MR relaxometry and Met-PET. rT1/T2 values significantly correlated with both T1- and T2-relaxation times in a logarithmic manner (p < 0.05 for both cases). The distributions of rT1/T2 from Met-PET high and low T2-FLAIR hyperintense lesions were different and a novel metric named Likeliness of Methionine PET high (LMPH) deriving from rT1/T2 was statistically significant for detecting Met-PET high T2-FLAIR hyperintense lesions (mean AUC = 0.556 ± 0.117; p = 0.01). In conclusion, this research study supported the hypothesis that rT1/T2 could be a promising imaging marker for NET identification.


Author(s):  
Zachary Bogorad ◽  
Prajwal MohanMurthy ◽  
Joseph A Formaggio

Abstract The Kassiopeia software package was originally developed to simulate electromagnetic fields and charged particle trajectories for neutrino mass measurement experiments. Recent additions to Kassiopeia also allow it to simulate neutral particle trajectories in magnetic fields based on their magnetic moments. Two different methods were implemented: an exact method that can work for arbitrary fields and an adiabatic method that is limited to slowly-varying fields but is much faster for large precession frequencies. Additional interactions to simulate reflection of ultracold neutrons from material walls and to allow spin-flip pulses were also added. These tools were used to simulate neutron precession in a room temperature neutron electric dipole moment experiment and predict the values of the longitudinal and transverse relaxation times as well as the trapping lifetime. All three parameters are found to closely match the experimentally determined values when simulated with both the exact and adiabatic methods, confirming that Kassiopeia is able to accurately simulate neutral particles. This opens the door for future uses of Kassiopeia to prototype the next generation of atomic traps and ultracold neutron experiments.


Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Zouhira Hireche ◽  
Nabil Himrane ◽  
Lyes Nasseri ◽  
Yasmine Hamrioui ◽  
Djamel Eddine Ameziani

This article demonstrates the feasibility of porous separation on the performance of displacement ventilation in a rectangular enclosure. A jet of fresh air enters the cavity through an opening at the bottom of the left wall and exits through an opening at the top of the right wall. The porous separation is placed in the center of the cavity and its height varies between 0.2 and 0.8 with three values of thickness, 0.1, 0.2, and 0.3. The heat transfer rate was calculated for different intervals of Darcy (10−6 ≤ Da ≤ 10), Rayleigh (10 ≤ Ra ≤ 106), and Reynolds (50 ≤ Re ≤ 500) numbers. The momentum and the energy equations were solved by the lattice Boltzmann method with multiple relaxation times (LB-MRT). Schemes D2Q9 and D2Q5 were chosen for the velocity and temperature fields, respectively. For porous separation, the generalized Darcy–Brinkman–Forchheimer model was adopted. It is represented by a term added in the standard LB equations. For the dynamic domain, numerical simulations revealed complex flow structures depending on all control parameters. The results showed that the thermal field, mainly in the second compartment, is very dependent on the size and permeability of the porous separation. However, they have no influence on the transfer rate.


Author(s):  
Pol Torres ◽  
Stephen Wu ◽  
Shenghong Ju ◽  
Chang Liu ◽  
Terumasa Tadano ◽  
...  

Abstract Machine learning techniques are used to explore the intrinsic origins of the hydrodynamic thermal transport and to find new materials interesting for science and engineering. The hydrodynamic thermal transport is governed intrinsically by the hydrodynamic scale and the thermal conductivity. The correlations between these intrinsic properties and harmonic and anharmonic properties, and a large number of compositional (290) and structural (1224) descriptors of 131 crystal compound materials are obtained, revealing some of the key descriptors that determines the magnitude of the intrinsic hydrodynamic effects, most of them related with the phonon relaxation times. Then, a trained black-box model is applied to screen more than 5000 materials. The results identify materials with potential technological applications. Understanding the properties correlated to hydrodynamic thermal transport can help to find new thermoelectric materials and on the design of new materials to ease the heat dissipation in electronic devices.to ease the heat dissipation in electronic devices.


2022 ◽  
Vol 8 ◽  
Author(s):  
Alexander A. Malär ◽  
Morgane Callon ◽  
Albert A. Smith ◽  
Shishan Wang ◽  
Lauriane Lecoq ◽  
...  

Protein plasticity and dynamics are important aspects of their function. Here we use solid-state NMR to experimentally characterize the dynamics of the 3.5 MDa hepatitis B virus (HBV) capsid, assembled from  240 copies of the Cp149 core protein. We measure both T1 and T1ρ relaxation times, which we use to establish detectors on the nanosecond and microsecond timescale. We compare our results to those from a 1 microsecond all-atom Molecular Dynamics (MD) simulation trajectory for the capsid. We show that, for the constituent residues, nanosecond dynamics are faithfully captured by the MD simulation. The calculated values can be used in good approximation for the NMR-non-detected residues, as well as to extrapolate into the range between the nanosecond and microsecond dynamics, where NMR has a blind spot at the current state of technology. Slower motions on the microsecond timescale are difficult to characterize by all-atom MD simulations owing to computational expense, but are readily accessed by NMR. The two methods are, thus, complementary, and a combination thereof can reliably characterize motions covering correlation times up to a few microseconds.


Author(s):  
F M A van den Heuvel ◽  
A C Dimitriu-Leen ◽  
J Habets ◽  
R Nijveldt

Abstract Background Epipericardial fat necrosis (EFN) is a rare cause of chest pain which is often unrecognized. Case summary A 58 year-old male previously known with a transient ischaemic attack presented with a sharp, substernal chest pain. Pulmonary embolism was ruled out by computed tomography (CT) angiography. However, CT angiography revealed an inhomogeneous epipericardial mass. On cardiovascular magnetic resonance imaging (CMR) the mass had an inhomogeneous signal intensity without infiltration of surrounding tissue. Late gadolinium enhancement imaging showed subtle hyperenhancement. Tissue characterization by means of parametric mapping revealed very low native T1 relaxation times and increased T2 relaxation times. In conclusion, the epipericardial mass showed fibro-fatty inflammatory markers, suggestive of EFN. The chest pain resolved spontaneously. Follow up CT 3 months later showed a marked regression of the mass which confirmed the diagnosis EFN. Discussion EFN is a benign and self-limiting inflammatory cause of chest pain which can be diagnosed with multi-modality imaging and must not be overlooked in the differential diagnosis of patients with acute pleuritic chest pain.


2021 ◽  
Author(s):  
Johanna Dorst ◽  
Tamas Borbath ◽  
Loreen Ruhm ◽  
Anke Henning

A method to estimate phosphorus (31P) transversal relaxation times (T2) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH (pHext, pHint) and relaxation corrected metabolite concentrations are reported. Echo time (TE) series of 31P metabolite spectra were acquired using STEAM localization. Spectra were fitted using LCModel with accurately modeled Vespa basis sets accounting for J−evolution of the coupled spin systems. T2s were estimated by fitting a single exponential two−parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and relaxation times were used to determine the brain metabolite concentrations. The method was demonstrated in the healthy human brain at a field strength of 9.4T. T2 relaxation times of ATP and NAD are the shortest between 8 ms and 20 ms, followed by T2s of inorganic phosphate between 25 ms and 50 ms, and PCr with a T2 of 100 ms. Phosphomonoesters and −diesters have the longest T2s of about 130 ms. Measured T2s are comparable to literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable to literature values


Sign in / Sign up

Export Citation Format

Share Document