Sequential fully implicit Newton method for compositional flow and transport

2021 ◽  
pp. 110541
Author(s):  
Jiawei Li ◽  
Pavel Tomin ◽  
Hamdi Tchelepi
SPE Journal ◽  
2009 ◽  
Vol 15 (02) ◽  
pp. 526-544 ◽  
Author(s):  
R.M.. M. Younis ◽  
H.A.. A. Tchelepi ◽  
K.. Aziz

Summary Growing interest in understanding, predicting, and controlling advanced oil-recovery methods emphasizes the importance of numerical methods that exploit the nature of the underlying physics. The fully implicit method offers unconditional stability of the discrete approximations. This stability comes at the expense of transferring the inherent physical stiffness onto the coupled nonlinear residual equations that are solved at each timestep. Current reservoir simulators apply safeguarded variants of Newton's method that can neither guarantee convergence nor provide estimates of the relation between convergence rate and timestep size. In practice, timestep chops become necessary and are guided heuristically. With growing complexity, such as in thermally reactive compositional flows, convergence difficulties can lead to substantial losses in computational effort and prohibitively small timesteps. We establish an alternative class of nonlinear iteration that converges and associates a timestep to each iteration. Moreover, the linear solution process within each iteration is performed locally. By casting the nonlinear residual equations for a given timestep as an initial-value problem, we formulate a continuation-based solution process that associates a timestep size with each iteration. Subsequently, no iterations are wasted and a solution is always attainable. Moreover, we show that the rate of progression is as rapid as that for a convergent standard Newton method. Moreover, by exploiting the local nature of nonlinear wave propagation typical to multiphase-flow problems, we establish a linear solution process that performs computation only where necessary. That is, given a linear convergence tolerance, we identify a minimal subset of solution components that will change by more than the specified tolerance. Using this a priori criterion, each linear step solves a reduced system of equations. Several challenging examples are presented, and the results demonstrate the robustness and computational efficiency of the proposed method.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Ø. S. Klemetsdal ◽  
A. Moncorgé ◽  
H. M. Nilsen ◽  
O. Møyner ◽  
K-. A. Lie

Summary Modern reservoir simulation must handle complex compositional fluid behavior, orders-of-magnitude variations in rock properties, and large velocity contrasts. We investigate how one can use nonlinear domain-decomposition preconditioning to combine sequential and fully implicit (FI) solution strategies to devise robust and highly efficient nonlinear solvers. A full simulation model can be split into smaller subdomains that each can be solved independently, treating variables in all other subdomains as fixed. In subdomains with weaker coupling between flow and transport, we use a sequential fully implicit (SFI) solution strategy, whereas regions with stronger coupling are solved with an FI method. Convergence to the FI solution is ensured by a global update that efficiently resolves long-range interactions across subdomains. The result is a solution strategy that combines the efficiency of SFI and its ability to use specialized solvers for flow and transport with the robustness and correctness of FI. We demonstrate the efficacy of the proposed method through a range of test cases, including both contrived setups to test nonlinear solver performance and realistic field models with complex geology and fluid physics. For each case, we compare the results with those obtained using standard FI and SFI solvers. This paper is published as part of the 2021 Reservoir Simulation Conference Special Issue.


Sign in / Sign up

Export Citation Format

Share Document