nonlinear wave propagation
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 39)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 17 (10) ◽  
pp. e1009476
Author(s):  
Rupamanjari Majumder ◽  
Sayedeh Hussaini ◽  
Vladimir S. Zykov ◽  
Stefan Luther ◽  
Eberhard Bodenschatz

Interruptions in nonlinear wave propagation, commonly referred to as wave breaks, are typical of many complex excitable systems. In the heart they lead to lethal rhythm disorders, the so-called arrhythmias, which are one of the main causes of sudden death in the industrialized world. Progress in the treatment and therapy of cardiac arrhythmias requires a detailed understanding of the triggers and dynamics of these wave breaks. In particular, two very important questions are: 1) What determines the potential of a wave break to initiate re-entry? and 2) How do these breaks evolve such that the system is able to maintain spatiotemporally chaotic electrical activity? Here we approach these questions numerically using optogenetics in an in silico model of human atrial tissue that has undergone chronic atrial fibrillation (cAF) remodelling. In the lesser studied sub-threshold illumination régime, we discover a new mechanism of wave break initiation in cardiac tissue that occurs for gentle slopes of the restitution characteristics. This mechanism involves the creation of conduction blocks through a combination of wavefront-waveback interaction, reshaping of the wave profile and heterogeneous recovery from the excitation of the spatially extended medium, leading to the creation of re-excitable windows for sustained re-entry. This finding is an important contribution to cardiac arrhythmia research as it identifies scenarios in which low-energy perturbations to cardiac rhythm can be potentially life-threatening.


2021 ◽  
Vol 26 (3) ◽  
pp. 177-186
Author(s):  
G. Panahov ◽  
E. Abbasov ◽  
S. Bakhtiyarov ◽  
P. Museibli

Abstract A study of nonlinear waves in liquid-gas mixtures with the consideration of internal effects is an important problem of both the fundamental and the applied fluid mechanics. Investigation of nonlinear waves in the gas-liquid mixtures with allowance for internal effects is an important task of both fundamental and applied fluid mechanics. These problems often arise in industrial processes such as oil and gas production, hydrocarbons pipeline transportation, gas-saturated fluids flow in pipelines, etc. In this work, we investigate the effect of the internal electric field on the nonlinear wave propagation in a bubbly liquid. Numerical simulations have been conducted to study the nonlinear waves described by the nonlinear Burgers-Korteweg-de Vries equation. The numerical simulations showed that the electrokinetic processes significantly affect the wave propagation process. The amplitude of the waves gradually decreases when the size of the gas bubble is decreasing and the electrical potential increases. A good agreement of obtained results with our previous predictions is found.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rabindra Biswas ◽  
Medha Dandu ◽  
Asish Prosad ◽  
Sarthak Das ◽  
Sruti Menon ◽  
...  

AbstractWe report strong second-harmonic generation (SHG) from 2H polytype of multilayer Tin diselenide (SnSe2) for fundamental excitation close to the indirect band-edge in the absence of excitonic resonances. Comparison of SHG and Raman spectra from exfoliated SnSe2 flakes of different polytypes shows strong (negligible) SHG and Raman Eg mode at 109 cm−1 (119 cm−1), consistent with 2H (1T) polytypes. The difference between the A1g–Eg Raman peak positions is found to exhibit significant thickness dependent for the 1T form, which is found to be absent for the 2H form. The observed thickness dependence of SHG with rapid oscillations in signal strength for small changes in flake thickness are in good agreement with a nonlinear wave propagation model considering nonlinear polarization with alternating sign from each monolayer. The nonlinear optical susceptibility extracted from SHG signal comparison with standard quartz samples for 1040 nm excitation is found to be more than 4-times higher than that at 1550 nm. This enhanced nonlinear response at 1040 nm is attributed to the enhanced nonlinear optical response for fundamental excitation close to the indirect band-edge. We also study SHG from heterostructures of monolayer MoS2/multilayer SnSe2 which allows us to unambiguously compare the nonlinear optical response of SnSe2 with MoS2. We find the SHG signal and any interference effect in the overlap region to be dominated by the SnSe2 layer for the excitation wavelengths considered. The comparison of SHG from SnSe2 and MoS2 underscores that the choice of the 2D material for a particular nonlinear optical application is contextual on the wavelength range of interest and its optical properties at those wavelengths. The present works further highlights the usefulness of near band-edge enhancement of nonlinear processes in emerging 2D materials towards realizing useful nanophotonic devices.


Ultrasonics ◽  
2021 ◽  
pp. 106476
Author(s):  
Jack Massaad ◽  
Paul L.M.J. van Neer ◽  
Douwe M. van Willigen ◽  
Nicolaas de Jong ◽  
Michiel A.P. Pertijs ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2548
Author(s):  
Dinah Maria Brandner ◽  
Xiran Cai ◽  
Josquin Foiret ◽  
Katherine W. Ferrara ◽  
Bernhard G. Zagar

We report on results from the comparison of two algorithms designed to estimate the attenuation coefficient from ultrasonic B-mode scans obtained from a numerical phantom simulating an ultrasound breast scan. It is well documented that this parameter significantly diverges between normal tissue and malignant lesions. To improve the diagnostic accuracy it is of great importance to devise and test algorithms that facilitate the accurate, low variance and spatially resolved estimation of the tissue’s attenuation properties. A numerical phantom is realized using k-Wave, which is an open source Matlab toolbox for the time-domain simulation of acoustic wave fields that facilitates both linear and nonlinear wave propagation in homogeneous and heterogeneous tissue, as compared to strictly linear ultrasound simulation tools like Field II. k-Wave allows to simulate arbitrary distributions, resolved down to single voxel sizes, of parameters including the speed of sound, mass density, scattering strength and to include power law acoustic absorption necessary for simulation tasks in medical diagnostic ultrasound. We analyze the properties and the attainable accuracy of both the spectral-log-difference technique, and a statistical moments based approach and compare the results to known reference values from the sound field simulation.


Sign in / Sign up

Export Citation Format

Share Document