rock properties
Recently Published Documents


TOTAL DOCUMENTS

1484
(FIVE YEARS 471)

H-INDEX

52
(FIVE YEARS 7)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Yujie Feng ◽  
Haijian Su ◽  
Yinjiang Nie ◽  
Honghui Zhao

Marble is a common rock used in many buildings for structural or ornamental purposes and is widely distributed in underground engineering projects. The rocks are exposed to high temperatures when a tunnel fire occurs, and they will be rapidly cooled during the rescue process, which has a great impact on the rock performance and the underground engineering stability. Therefore, the role of cyclic thermal shocks on the physical and mechanical properties of marble specimens was systematically investigated. Different cyclic thermal shock treatments (T = 25, 200, 400, 600, 800 °C; N = 1, 3, 5, 7, 9) were applied to marble specimens and the changes in mass, volume, density and P-wave velocity were recorded in turn. Then, the thermal conductivity, optical microscopy and uniaxial compression tests were carried out. The results showed that both the cyclic thermal shock numbers (N) and the temperature level (T) weaken the rock properties. When the temperature of a thermal shock exceeds 600 °C, the mass loss coefficient and porosity of the marble will increase significantly. The most noticeable change in P-wave velocity occurs between 200 and 400 °C, with a 52.98% attenuation. After three thermal shocks, the cyclic thermal shock numbers have little influence on the uniaxial compressive strength and Young’s modulus of marble specimens. Shear failure is the principal failure mode in marble specimens that have experienced severe thermal damage (high N or T). The optical microscopic pictures are beneficial for illustrating the thermal cracking mechanism of marble specimens after cyclic thermal shocks.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 15-39
Author(s):  
David Healy ◽  
Stephen Paul Hicks

Abstract. The operations needed to decarbonize our energy systems increasingly involve faulted rocks in the subsurface. To manage the technical challenges presented by these rocks and the justifiable public concern over induced seismicity, we need to assess the risks. Widely used measures for fault stability, including slip and dilation tendency and fracture susceptibility, can be combined with response surface methodology from engineering and Monte Carlo simulations to produce statistically viable ensembles for the analysis of probability. In this paper, we describe the implementation of this approach using custom-built open-source Python code (pfs – probability of fault slip). The technique is then illustrated using two synthetic examples and two case studies drawn from active or potential sites for geothermal energy in the UK and discussed in the light of induced seismicity focal mechanisms. The analysis of probability highlights key gaps in our knowledge of the stress field, fluid pressures, and rock properties. Scope exists to develop, integrate, and exploit citizen science projects to generate more and better data and simultaneously include the public in the necessary discussions about hazard and risk.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 41-64
Author(s):  
Berit Schwichtenberg ◽  
Florian Fusseis ◽  
Ian B. Butler ◽  
Edward Andò

Abstract. Phyllosilicates are generally regarded to have a reinforcing effect on chemical compaction by dissolution–precipitation creep (DPC) and thereby influence the evolution of hydraulic rock properties relevant to groundwater resources and geological repositories as well as fossil fuel reservoirs. We conducted oedometric compaction experiments on layered NaCl–biotite samples to test this assumption. In particular, we aim to analyse slow chemical compaction processes in the presence of biotite on the grain scale and determine the effects of chemical and mechanical feedbacks. We used time-resolved (4-D) microtomographic data to capture the dynamic evolution of the porosity in layered NaCl–NaCl/biotite samples over 1619 and 1932 h of compaction. Percolation analysis in combination with advanced digital volume correlation techniques showed that biotite grains influence the dynamic evolution of porosity in the sample by promoting a reduction of porosity in their vicinity. However, the lack of preferential strain localisation around phyllosilicates and a homogeneous distribution of axial shortening across the sample suggests that the porosity reduction is not achieved by pore collapse but by the precipitation of NaCl sourced from outside the NaCl–biotite layer. Our observations invite a renewed discussion of the effect of phyllosilicates on DPC, with a particular emphasis on the length scales of the processes involved. We propose that, in our experiments, the diffusive transport processes invoked in classical theoretical models of DPC are complemented by chemo-mechanical feedbacks that arise on longer length scales. These feedbacks drive NaCl diffusion from the marginal pure NaCl layers into the central NaCl–biotite mixture over distances of several hundred micrometres and several grain diameters. Such a mechanism was first postulated by Merino et al. (1983).


2022 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p><a></a>Each grid block in a 3D geological model requires a rock type that represents all physical and chemical properties of that block. The properties that classify rock types are lithology, permeability, and capillary pressure. Scientists and engineers determined these properties using conventional laboratory measurements, which embedded destructive methods to the sample or altered some of its properties (i.e., wettability, permeability, and porosity) because the measurements process includes sample crushing, fluid flow, or fluid saturation. Lately, Digital Rock Physics (DRT) has emerged to quantify these properties from micro-Computerized Tomography (uCT) and Magnetic Resonance Imaging (MRI) images. However, the literature did not attempt rock typing in a wholly digital context. We propose performing Digital Rock Typing (DRT) by: (1) integrating the latest DRP advances in a novel process that honors digital rock properties determination, while; (2) digitalizing the latest rock typing approaches in carbonate, and (3) introducing a novel carbonate rock typing process that utilizes computer vision capabilities to provide more insight about the heterogeneous carbonate rock texture.<br></p>


2022 ◽  
Author(s):  
Omar Alfarisi ◽  
Djamel Ouzzane ◽  
Mohamed Sassi ◽  
TieJun Zhang

<p><a></a>Each grid block in a 3D geological model requires a rock type that represents all physical and chemical properties of that block. The properties that classify rock types are lithology, permeability, and capillary pressure. Scientists and engineers determined these properties using conventional laboratory measurements, which embedded destructive methods to the sample or altered some of its properties (i.e., wettability, permeability, and porosity) because the measurements process includes sample crushing, fluid flow, or fluid saturation. Lately, Digital Rock Physics (DRT) has emerged to quantify these properties from micro-Computerized Tomography (uCT) and Magnetic Resonance Imaging (MRI) images. However, the literature did not attempt rock typing in a wholly digital context. We propose performing Digital Rock Typing (DRT) by: (1) integrating the latest DRP advances in a novel process that honors digital rock properties determination, while; (2) digitalizing the latest rock typing approaches in carbonate, and (3) introducing a novel carbonate rock typing process that utilizes computer vision capabilities to provide more insight about the heterogeneous carbonate rock texture.<br></p>


Author(s):  
Shahriyar Alkhasli ◽  
Gasham Zeynalov ◽  
Aydin Shahtakhtinskiy

AbstractDeformation bands (DB) are known to influence porosity and permeability in sandstones. This study aims to predict the occurrence of DB and to quantify their impact on reservoir properties based on field measurements in the steeply dipping limb of a kilometer-scale fold in Yasamal Valley, western South Caspian Basin. An integrated approach of characterizing bands and their effect on reservoir properties included measurements of natural gamma radioactivity and permeability using portable tools, along with bed dip and the count of DB across distinct facies. A set of core analyses was performed on outcrop plugs with and without bands to estimate the alteration of rock properties at the pore scale. Interpretation of outcrop gamma-ray data indicates the absence of bands in Balakhany sandstones containing shale volume greater than 18% for unconsolidated and 32% for calcite-rich facies. A high amount of calcite cement appears to increase the number of DB. A poor, positive trend between bed dip and DB concentration was identified. We show that net to gross, defined as the thickness fraction of sandstone bound by mudstones, is among the parameters controlling the occurrence of bands. Samples containing a single DB show a 33% and 3% decrease in permeability and porosity, respectively, relative to the host rock. We reveal a new set of lithological and petrophysical factors influencing DB occurrence. This study offers a direct tool that can be applied in subsurface reservoir analogs to predict the occurrence and concentration of DB and estimate their influence on rock properties.


2022 ◽  
Author(s):  
Lamees N. Abdulkareem ◽  

Amplitude variation with offset (AVO) analysis is an 1 efficient tool for hydrocarbon detection and identification of elastic rock properties and fluid types. It has been applied in the present study using reprocessed pre-stack 2D seismic data (1992, Caulerpa) from north-west of the Bonaparte Basin, Australia. The AVO response along the 2D pre-stack seismic data in the Laminaria High NW shelf of Australia was also investigated. Three hypotheses were suggested to investigate the AVO behaviour of the amplitude anomalies in which three different factors; fluid substitution, porosity and thickness (Wedge model) were tested. The AVO models with the synthetic gathers were analysed using log information to find which of these is the controlling parameter on the AVO analysis. AVO cross plots from the real pre-stack seismic data reveal AVO class IV (showing a negative intercept decreasing with offset). This result matches our modelled result of fluid substitution for the seismic synthetics. It is concluded that fluid substitution is the controlling parameter on the AVO analysis and therefore, the high amplitude anomaly on the seabed and the target horizon 9 is the result of changing the fluid content and the lithology along the target horizons. While changing the porosity has little effect on the amplitude variation with offset within the AVO cross plot. Finally, results from the wedge models show that a small change of thickness causes a change in the amplitude; however, this change in thickness gives a different AVO characteristic and a mismatch with the AVO result of the real 2D pre-stack seismic data. Therefore, a constant thin layer with changing fluids is more likely to be the cause of the high amplitude anomalies.


2022 ◽  
Author(s):  
Amr Mohamed Badawy ◽  
Tarek Al Arbi Omar Ganat

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 162
Author(s):  
Michael Chuks Halim ◽  
Hossein Hamidi ◽  
Alfred R. Akisanya

The recovery of oil and gas from underground reservoirs has a pervasive impact on petroleum-producing companies’ financial strength. A significant cause of the low recovery is the plugging of reservoir rocks’ interconnected pores and associated permeability impairment, known as formation damage. Formation damage can effectively reduce productivity in oil- and gas-bearing formations—especially in sandstone reservoirs endowed with clay. Therefore, knowledge of reservoir rock properties—especially the occurrence of clay—is crucial to predicting fluid flow in porous media, minimizing formation damage, and optimizing productivity. This paper aims to provide an overview of recent laboratory and field studies to serve as a reference for future extensive examination of formation damage mitigation/formation damage control technology measures in sandstone reservoirs containing clay. Knowledge gaps and research opportunities have been identified based on the review of the recent works. In addition, we put forward factors necessary to improve the outcomes relating to future studies.


2021 ◽  
Vol 11 (4) ◽  
pp. 36-50
Author(s):  
Wessam Abdul Abbas Alhammod ◽  
Ban Talib Aljizani

This research focused on using seismic data to review the structure of the (X) Oil Field, located 40 km SW of Basrah, Southern Iraq. The study utilises a 3D seismic survey conducted during 2011-2012, covering the (Y) Oil Field 2 km to the west, and with partial coverage across (X), to map the Top Zubair reflector. Seismic rock properties analysis was conducted on key (X) Oil Field wells and used to tie the Top Zubair reflector on (X) Oil Field. The reflector was mapped within the time domain using DecisionSpace Software, and then converted to depth using a velocity model. The depth structure map was then compared to the original oil water contact (OOWC) across the fields to understand the potential structural closure of the Top Zubair reservoir in both fields.


Sign in / Sign up

Export Citation Format

Share Document