scholarly journals Development and validation of a numerical wave tank based on the Harmonic Polynomial Cell and Immersed Boundary methods to model nonlinear wave-structure interaction

2021 ◽  
pp. 110560
Author(s):  
Fabien Robaux ◽  
Michel Benoit
Author(s):  
Harry B. Bingham ◽  
Allan P. Engsig-Karup

This contribution presents our recent progress on developing an efficient solution for fully nonlinear wave-structure interaction. The approach is to solve directly the three-dimensional (3D) potential flow problem. The time evolution of the wave field is captured by integrating the free-surface boundary conditions using a fourth-order Runge-Kutta scheme. A coordinate-transformation is employed to obtain a time-constant spatial computational domain which is discretized using arbitrary-order finite difference schemes on a grid with one stretching in each coordinate direction. The resultant linear system of equations is solved by the GMRES iterative method, preconditioned using a multigrid solution to the linearized, lowest-order version of the matrix. The computational effort and required memory use are shown to scale linearly with increasing problem size (total number of grid points). Preliminary examples of nonlinear wave interaction with variable bottom bathymetry and simple bottom mounted structures are given.


Author(s):  
Arun Kamath ◽  
Hans Bihs ◽  
Csaba Pakozdi

Typical offshore structures are designed as tension-leg platforms or gravity based structures with cylindrical substructures. The interaction of waves with the vertical cylinders in high sea states can result in a resonant response called ringing. Here, the frequency of the structural response is close to the natural frequency of the structure itself and leads to large amplitude motions. This is a case of extreme wave loading in high sea states. This understanding of higher-order wave forces in extreme sea states is an essential parameter for obtaining a safe, reliable and economical design of an offshore structure. The study of such higher-order effects needs detailed near-field modelling of the wave-structure interaction and the associated flow phenomena. In such cases, a Computational Fluid Dynamics (CFD) model that can accurately represent the free surface and further the wave-structure interaction problem can provide important insights into the wave hydrodynamics and the structural response. In this paper, the open source CFD model REEF3D is used to simulate wave interaction with a vertical cylinder and the wave forces on the cylinder are calculated. The harmonic components of the wave force are analysed. The model employs higher-order discretisation schemes such as a fifth-order WENO scheme for convection discretisation and a third-order Runge-Kutta scheme for time advancement on a staggered Cartesian grid. The level set method is used to obtain the free surface, providing a sharp interface between air and water. The relaxation method is used to generate and absorb the waves at the two ends of the numerical wave tank. This method provides good quality wave generation and also the wave reflected from the cylinder are absorbed at the wave generation zone. In this way, the generated waves are not affected by the wave interaction process in the numerical wave tank. This is very essential in the studies of higher-order wave interaction problems which are very sensitive to the incident wave characteristics. The numerical results are compared to experimental results for higher-order forces on a vertical cylinder to validate the numerical model.


Sign in / Sign up

Export Citation Format

Share Document