wave forces
Recently Published Documents


TOTAL DOCUMENTS

1048
(FIVE YEARS 138)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Estefano Muñoz-Moya ◽  
Claudio M. García-Herrera ◽  
Nelson A. Lagos ◽  
Aldo F. Abarca-Ortega ◽  
Antonio G. Checa ◽  
...  

AbstractMollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., $$pCO_2$$ p C O 2 -induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material’s stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.


2021 ◽  
Vol 33 (6) ◽  
pp. 345-356
Author(s):  
Min Su Park

In order to increase the structural stability of existing caisson breakwater, the design and the construction is carried out by installation of new caissons on the back or the front of old caissons. In this study, we use the ANSYS AQWA program to analyze the wave forces acting on individual caisson according to effects of wave structure interaction when new caissons are additionally installed on existing caisson breakwater. Firstly, the wave force characteristics acting on the individual caisson were analyzed for each period (frequency) in the frequency domain. In time domain analysis, the dynamic wave force characteristics were strongly influenced by the distance between caissons on the frequency at which the unusual distribution of wave forces occurs.


2021 ◽  
Vol 33 (6) ◽  
pp. 275-286
Author(s):  
Jae-Sang Jung ◽  
Changhoon Lee

In this study, the analytical solution for diffraction near a vertical detached breakwater was suggested by superposing the solutions of diffraction near a semi-infinite breakwater suggested previously using linear wave theory. The solutions of wave forces acting on front, lee and composed wave forces on both side were also derived. Relative wave amplitude changed periodically in space owing to the interactions between diffracting waves and standing waves on front side and the interactions between diffracting waves from both tips of a detached breakwater on lee side. The wave forces on a vertical detached breakwater were investigated with monochromatic, uni-directional random and multi-directional random waves. The maximum composed wave force considering the forces on front and lee side reached maximum 1.6 times of wave forces which doesn’t consider diffraction. This value is larger than the maximum composed wave force of semi-infinite breakwater considering diffraction, 1.34 times, which was suggested by Jung et al. (2021). The maximum composed wave forces were calculated in the order of monochromatic, uni-directional random and multi-directional random waves in terms of intensity. It was also found that the maximum wave force of obliquely incident waves was sometimes larger than that of normally incident waves. It can be known that the considerations of diffraction, the composed wave force on both front and lee side and incident wave angle are important from this study.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 166
Author(s):  
Moe Moe Aye ◽  
Uwe Ritschel

In this paper, a two-bladed medium-sized floating wind turbine with variable speed and power regulation by stall is studied. For floating offshore wind turbines, the major challenges are related to the dynamical behavior of the system in response to combined wind and wave loading. Especially for smaller systems, the coupling of aerodynamic and wave forces may lead to large amplitude motions. Coupled aero-hydro-servo-elastic simulations are carried out in OpenFAST. The goal of the study is to investigate the global dynamic response of the hypothetical wind turbine with stall regulation. Stall regulation concept is proposed and the structural loads are computed and results are presented and discussed.


2021 ◽  
Vol 9 (12) ◽  
pp. 1459
Author(s):  
Qingze Gao ◽  
Lifei Song ◽  
Jianxi Yao

The wave-induced motions, and steady wave forces and moments for the oil tanker KVLCC2 in regular head and oblique waves are numerically predicted by using the expanded RANS solver based on OpenFOAM. New modules of wave boundary condition are programed into OpenFOAM for this purpose. In the present consideration, the steady wave forces and moments include not only the contribution of hydrodynamic effects but also the contribution of the inertial effects due to wave-induced ship motions. The computed results show that the contribution of the inertial effects due to heave and pitch in head waves is non-negligible when wave-induced motions are of large amplitude, for example, in long waves. The influence of wave amplitude on added resistance in head waves is also analyzed. The dimensionless added resistance becomes smaller with the increasing wave amplitude, indicating that added resistance is not proportional to the square of wave amplitude. However, wave amplitude seems not to affect the heave and pitch RAOs significantly. The steady wave surge force, sway force and yaw moment for the KVLCC2 with zero speed in oblique waves are computed as well. The present RANS results are compared with available experimental data, and very good agreements are found between them.


2021 ◽  
Vol 9 (12) ◽  
pp. 1445
Author(s):  
Mingyuan Ma ◽  
Hong Zhang ◽  
Dong-Sheng Jeng ◽  
Chien Ming Wang

In the present study, a semi-analytical model based on the small-amplitude wave theory is developed to describe the wave fields around a single gravity-type cylindrical open fish net cage. The cage may be submerged to different depths below the free-water surface. The fish cage net is modelled as a flexible porous membrane, and the deflection of the net chamber is expressed by the transverse vibration equation of strings. The velocity potential is expanded in the form of the Fourier–Bessel series and the unknown coefficients in these series are determined from matching the boundary conditions and the least squares method. The number of terms for the series solution to be used is determined from convergence studies. The model results exhibit significant hydroelastic characteristics of the net cages, including the distribution properties of wave surface, pressure drop at the net interface, structural deflection, and wave loading along the cage height. In addition, the relationships between wave forces on the net cage with hydrodynamic and structural parameters are also revealed. The findings presented herein should be useful to engineers who are designing fish cage systems.


2021 ◽  
Vol 9 (12) ◽  
pp. 1374
Author(s):  
Jingyuan Li ◽  
Qinghe Zhang ◽  
Tongqing Chen

A numerical model of internal solitary waves in continuously stratified fluids is developed by introducing a density transport equation to the three-dimensional Navier–Stokes equation and adopting the fully nonlinear models of the Dubreil-Jacotin-Long equation to obtain the initial field of the ISW. The corresponding turbulence model has also been modified to ensure that it considers the variable density field. Comparisons between numerical simulation results and experimental results show that the total resistance, the nondimensional pressure coefficient, and the nondimensional friction coefficient for the standard submarine model proposed by the Defense Advanced Research Projects Agency under different flow field conditions are highly consistent with the experimental results. The model established is used to numerically analyse the forces and moments of the standard submarine model encountering ISWs at different submergence depths. The influence of the rotation centre position on the moment is discussed, and the position range of the optimal rotation centre is proposed.


2021 ◽  
Vol 6 (12) ◽  
pp. 170
Author(s):  
Jinsheng Wang ◽  
Shihao Xue ◽  
Guoji Xu

To facilitate the establishment of the probabilistic model for quantifying the vulnerability of coastal bridges to natural hazards and support the associated risk assessment and mitigation activities, it is imperative to develop an accurate and efficient method for wave forces prediction. With the fast development of computer science, surrogate modeling techniques have been commonly used as an effective alternative to computational fluid dynamics for the establishment of a predictive model in coastal engineering. In this paper, a hybrid surrogate model is proposed for the efficient and accurate prediction of the solitary wave forces acting on coastal bridge decks. The underlying idea of the proposed method is to enhance the prediction capability of the constructed model by introducing an additional surrogate to correct the errors made by the main predictor. Specifically, the regression-type polynomial chaos expansion (PCE) is employed as the main predictor to capture the global feature of the computational model, whereas the interpolation-type Kriging is adopted to learn the local variations of the prediction error from the PCE. An engineering case is employed to validate the effectiveness of the hybrid model, and it is observed that the prediction performance (in terms of residual mean square error and correlation coefficient) of the hybrid model is superior to the optimal PCE and artificial neural network (ANN) for both horizontal and vertical wave forces, albeit the maximum PCE degrees used in the hybrid model are lower than the optimal degrees identified in the pure PCE model. Moreover, the proposed hybrid model also enables the extraction of explicit predictive equations for the parameters of interest. It is expected that the hybrid model could be extended to more complex wave conditions and structural shapes to facilitate the life-cycle structural design and analysis of coastal bridges.


Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract Accuracy estimation of wave loading on cylinders in a pile group under different impact scenarios is essential for both the structural safety and cost of coastal and offshore structures. Differing from the interaction of waves with a single cylinder, less attention has been paid to pile groups under different arrangements. Numerical simulations of interactions between plunging breaking waves and pile group in finite water depth are performed using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program to investigate the wave loads and flow kinematics characteristics. The Reynolds-averaged Navier-Stokes equation with the two equation k − ω turbulence model is adopted to resolve the numerical wave tank. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data. Four cases are simulated with different relative distances, numbers of cylinders and arrangements. Results show that the wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a pile group mostly happens between the neighboring cylinders.


Sign in / Sign up

Export Citation Format

Share Document