Strain hardening, local buckling and lateral-torsional buckling in plastic hinges

2006 ◽  
Vol 62 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
J.M. Davies
2000 ◽  
Vol 6 (2) ◽  
pp. 82-86 ◽  
Author(s):  
Vaidotas Šapalas

Two single-span frame tests were carried out. The width of frame is 6m, column's height 4.17m. Frame supports are pinned. Connection between column and beam is rigid. Beam of the frame was loaded with two vertical and one horizontal loads. The stability of tappered columns was analysed in frame plane and in perpendicular plane, according to [1] and [2] methods. All deflections were calculated taking into account support movements. During the first frame test R1-1 the tapered column collapsed at the load 2V=400kN and H=200 kN (vertical and horizontal loads). During the second test R1-2 the tapered column collapsed at the load 2V=390 kN and H=175 kN. In both tests columns collapsed in lateral-torsional buckling way. Because the column's web is very thin at the load 2V=300 kN and H=150 kN the column's web achieved local buckling. But the column was still carrying the load. During both tests at the load 2V=300 kN and H=150 kN the column began to twist in the middle of its height about the longitudinal axis and to bend about the weak axis. In test R1-1, the vertical experimental deflection (in point 6, see Fig 1 a) is about 17.5% smaller than the theoretical one. The horizontal experimental deflection (in point, see Fig 1 a) is about 11.6% smaller than the theoretical one. In test R1-2, vertical experimental deflection (in point 6, see Fig 1 a) is about 21.1% bigger than the theoretical one. The horizontal experimental deflection (in point, see Fig 1 a) is about 29.6% smaller than the theoretical one. In test R1-1, an experimental compression stresses in section A-A (see Fig 2) are about 11.2% smaller than the theoretical one. Experimental tension stresses in section A-A are about 8.65% smaller than the theoretical one. In test R1-2, an experimental compression stresses in section A-A is about 0.43% bigger than the theoretical one. An experimental tension strain in section A-A is about 1.73% smaller than the theoretical one.


2013 ◽  
Vol 7 (1) ◽  
pp. 244-250 ◽  
Author(s):  
Amin Mohebkhah ◽  
Behrouz Chegeni

Lateral-torsional buckling (LTB) and flange local buckling (FLB) are treated as two independent phenomena in AISC-LRFD 360-10 in which the flexural capacity of locally buckled beams is determined as the minimum value obtained for the limit states of LTB and FLB. A 3-D nonlinear finite-element model using ABAQUS is developed in this research to investigate the interactive flexural capacity of steel I-beams with compact web under moment gradient. It was found that the AISC approach is adequate for beams with compact or noncompact sections, however, too conservative for beams with slender flanges representing a considerable interaction between LTB and FLB limit states.


2011 ◽  
Vol 105-107 ◽  
pp. 1677-1680
Author(s):  
Young Bong Kwon ◽  
Jin Hwan Cheung ◽  
Byung Seung Kong ◽  
Hwan Woo Lee ◽  
Kwang Kyu Choi

This paper describes a series of flexural tests conducted on the H-section beams fabricated from SM490 plate of thickness 0.6mm with nominal yield stress 315 MPa. Flexural members with large width-to-thickness ratios in the flanges or the web may undergo local buckling before lateral-torsional buckling. The local buckling has a negative effect on the moment capacity based on the lateral-torsional buckling. Simple bending moment capacity formulas for flexural members were calibrated to the test results to account for interaction between local buckling and lateral-torsional buckling. The ultimate flexural strengths predicted by the proposed formulas for direct strength method were compared with the AISC (2005) and Eurocode3 (2003). The comparison showed that the moment formulas proposed can predict conservatively the bending moment capacity of H-section flexural members with local buckling.


Stahlbau ◽  
2008 ◽  
Vol 77 (4) ◽  
pp. 247-256 ◽  
Author(s):  
H.H. (Bert) Snijder ◽  
J.C.D. (Hans) Hoenderkamp ◽  
M.C.M. (Monique) Bakker ◽  
H.M.G.M. (Henri) Steenbergen ◽  
C.H.M. (Karin) de Louw

Sign in / Sign up

Export Citation Format

Share Document