Assessment of modified consecutive modal pushover analysis for estimating the seismic demands of tall buildings with dual system considering steel concentrically braced frames

2012 ◽  
Vol 72 ◽  
pp. 155-167 ◽  
Author(s):  
Faramarz Khoshnoudian ◽  
M. Mehdi B. Kashani
2011 ◽  
Vol 255-260 ◽  
pp. 806-810
Author(s):  
Biao Wei ◽  
Qing Yuan Zeng ◽  
Wei An Liu

Taking one irregular continuous bridge as an example, modal pushover analysis (MPA) has been conducted to judge whether it would be applicable for seismic analysis of irregular bridge structures. The bridge’s seismic demand in the transverse direction has been determined through two different methods, inelastic time history analysis (ITHA) and MPA respectively. The comparison between those two results indicates that MPA would be suitable only for bridges under elastic or slightly damaged state. Finally, some modifications are used to improve the MPA’s scope of application, and the results illustrate that the adapted MPA will be able to estimate bridges’ seismic demands to some extent.


2016 ◽  
Vol 847 ◽  
pp. 281-289
Author(s):  
Erkan Senol ◽  
Ismail Kose ◽  
Bilge Doran ◽  
Pelin Elif Mezrea ◽  
Bulent Akbas

Adding braces to moment frames is considered to be quite an efficient technique for increasing the global stiffness and strength of the structure. It has not only been used in steel moment frames, but also in reinforced concrete (RC) moment frames in recent years. It certainly can increase the energy absorption capacity of structures and also decrease the demand imposed by seismic ground motions. Steel braces are anchored firmly to boundary beams and columns. They are modeled as truss elements and increase earthquake resistance of the building. Buckling restrained braced frames (BRBFs) in which members yield under both tension and compression without significant buckling have been used in recent years in order to ensure the desired seismic performance of special concentrically braced frames. BRBFs are similar to the special concentrically braced frames in that seismic accelerations are resisted by a building-frame members and diagonal braces whereas the design procedure is different. BRBs should be designed to permit ductile yielding both in compression and tension. In this paper, flat-slab RC building with two different configurations of buckling restraint braces (BRBs) is studied. The buildings have 4-storey with 5 bays in both X-and Y-directions and have been designed according to Turkish Specification of Reinforced Concrete Design (TS 500). In order to explore overall behavior up to failure and lateral load resisting capacities for these buildings, nonlinear static analyses have then been performed using SAP 2000-V14.1. Pushover analysis under constant gravity loads and monotonically increasing lateral forces during an earthquake until a target displacement is reached is generally carried out as an effective tool for performance based design. The major outcome of a pushover analysis is the capacity curve which shows the base shear vs. the roof displacement relationship and represents the overall performance of the building. The results of the analyses are presented in terms of capacity curve and energy dissipation.


Author(s):  
Michel Bruneau ◽  
Myrto Anagnostopoulou ◽  
Greg MacRae ◽  
Charles Clifton ◽  
Alistair Fussell

This paper presents preliminary findings based on the performance of various steel structures during the Darfield earthquake of September 4, 2010, including concentrically braced frames, eccentrically braced frames, steel tanks, and steel houses. With a few exceptions, steel structures performed well during this earthquake, but much of this is attributed to the fact that seismic demands from the Darfield earthquake were generally lower than considered in their design.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Feng Wang ◽  
Jian-Gang Sun ◽  
Ning Zhang

Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1) the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2) Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3) Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.


Sign in / Sign up

Export Citation Format

Share Document