modal pushover
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 6 (2) ◽  
pp. 98
Author(s):  
Ilham Ilham

ABSTRAKPenggunaan bresing tahan tekuk dapat menjadi solusi atas kebutuhan struktur tahan gempa di Indonesia. Disipasi energi pada elemen bresing tahan tekuk dilakukan melalui kinerja plastifikasi bagian inti bresing akibat beban tarik dan tekan. Penelitian ini berisi kajian kinerja dari bangunan rangka baja beraturan dengan bresing tahan tekuk (BRB) dengan variasi level ketinggian lantai yaitu 3 lantai, 8 lantai dan 15 lantai. Analisis struktur 3D dilakukan dengan dua prosedur analisis yaitu modal pushover dan nonlinear time history pada program ETABS. Hasil analisis menunjukkan bahwa pemilihan elemen BRB sangat mempengaruhi kinerja struktur, yang terlihat dari pola drift yang terjadi. Untuk struktur beraturan dengan berbagai ketinggian, tingkat kinerja struktur dengan BRB cukup baik, yaitu Immediate Occupancy (IO) akibat beban gempa rencana. Plastifikasi hanya terjadi pada BRB, dan kelelehan pada balok mulai terbentuk sampai mekanisme keruntuhan terjadi. Hasil modal pushover dengan nonlinear time history pada bangunan 15 lantai yang cukup mirip menunjukkan bahwa modal pushover dapat digunakan untuk memprediksi kinerja struktur BRB yang beraturan.Kata kunci: kinerja struktur, bresing tahan tekuk, immediate occupancy, modal pushover, nonlinear time history ABSTRACTBuckling restrained braces (BRB) can be an alternative solution for earthquake resistant steel structure in Indonesia. The energy dissipation for buckling restrained elements is conducted through yielding of the core due to tension or compression forces. This study presents an evaluation of the structural performance of steel structures with BRB varying in heights, 3-story, 8-story and 15-story. The 3D structural analysis was carried out with ETABS software using 2 methods, Modal Pushover and Nonlinear Time History. The results shows that the selection of BRB elements greatly affected the structural performance, showed by the drift pattern. For regular structures with variation in heights, structures with BRB behaved satisfactory under the design load with the performance level of Immediate Occupancy (IO). Yielding was limited to BRB members, and afterwards the yielding occurred on beams until collapse. The results of modal pushover and time history analysis for 15-story structure are similar, thus modal pushover can be used to predict the performance of regular structural system with BRB.Keywords: structural performance, buckling restrained brace, immediate occupancy, modal pushover analysis, nonlinear time history analysis


2020 ◽  
Vol 10 (19) ◽  
pp. 6738
Author(s):  
Alessandro Vittorio Bergami ◽  
Gabriele Fiorentino ◽  
Davide Lavorato ◽  
Bruno Briseghella ◽  
Camillo Nuti

Near-fault events can cause severe damage to civil structures, including bridges. Many studies have demonstrated that the seismic assessment is not straightforward. Usually, dealing with near-fault ground motion, the structural analysis is performed using Nonlinear Response-History Analysis (NRHA) but in the last years, many authors have tested existing pushover-based procedures originally developed and validated using far-field events. Between those procedures, the Incremental Modal Pushover Analysis (IMPAβ) is a pushover-based procedure specifically developed for bridges that, in this work, was applied to a case study considering near-fault pulse-like ground motion records. The records were analyzed and selected from the European Strong Motion Database. In the paper the results obtained with IMPAβ together with other standard pushover procedures, are compared with NRHA and incremental dynamic analyses; the vertical component of the motion has been also considered. Results obtained with the bridge case study demonstrate that the vertical seismic action has a minor influence on the structural response and that IMPAβ is confirmed as a very effective pushover-based method that can be applied also for near-fault events.


2020 ◽  
Vol 10 (12) ◽  
pp. 4287 ◽  
Author(s):  
Alessandro Vittorio Bergami ◽  
Camillo Nuti ◽  
Davide Lavorato ◽  
Gabriele Fiorentino ◽  
Bruno Briseghella

In the present study, the incremental modal pushover analysis (IMPA), a pushover-based approach already proposed and applied to buildings by the same authors, was revised and proposed for bridges (IMPAβ). Pushover analysis considers the effects of higher modes on the structural response. Bridges are structurally very different from multi-story buildings, where multimodal pushover (MPA) has been developed and is currently used. In bridges, consideration for higher modes is often necessary: The responses of some structural elements of the bridge (e.g., piers) influence the overall bridge response. Therefore, the failure of these elements can determine the failure of the whole structure, even if they give a small contribution total base shear. Incremental dynamic analysis (IDA) requires input accelerograms for high intensities, which are rare in the databases, while scaling of generated accelerograms with a simple increment of the scaling acceleration is not appropriate. This fact renders IDA, which is by its nature time-consuming, not straightforward. On the contrary, the change of input spectrum required by IMPA is simple. IMPAβ also utilizes a simple complementary method coupled to MPA, to obtain bounds at very high seismic intensities. Finally, the two incremental methods based on static nonlinear and dynamic nonlinear analyses are compared.


Sign in / Sign up

Export Citation Format

Share Document