Fire performance of restrained welded steel box columns

2015 ◽  
Vol 107 ◽  
pp. 173-181 ◽  
Author(s):  
Kuo Chen Yang ◽  
Fang Chieh Yang
1989 ◽  
Vol 12 (2) ◽  
pp. 119-139 ◽  
Author(s):  
N.E. Shanmugam ◽  
J.Y. Richard Liew ◽  
S.L. Lee

2020 ◽  
Vol 15 (1) ◽  
pp. 3-14
Author(s):  
Károly Jármai ◽  
Máté Petrik

Abstract Stability is one of the most critical problems in the design of welded metal structures, since in many cases instability causes failure or collapse of the structures. The present study aims to show the minimum mass design procedure for welded steel box columns loaded by a compression force. The normal stresses and overall stability are calculated for pinned columns. The dimensions of the box columns are optimized by using constraints on global stability, local buckling of webs and flanges. Different design rules and standards are compared: Eurocode 3, Japan Railroad Association, American Petroleum Institute, and American Institute of Steel Construction. The calculations are made for different loadings, column length and steel grades. The yield stress varies between 235 and 690 MPa. Optimization is carried out using the generalized reduced gradient method in Excel solver. Cost calculations and comparisons show the most economical structure.


2018 ◽  
Vol 84 (7) ◽  
pp. 62-66
Author(s):  
K. V. Kurashkin

A method of ultrasonic control of the mechanical stresses which takes into account the heterogeneity of the material structure and does not require unloading of the structure or using reference samples is considered. The procedure is based on echo-method of measuring time of the bulk elastic wave propagation and determination of the relative values ν31 and ν32 related to the material structure and mechanical stresses. It is shown that stresses violate the linearity of the relationship observed between the parameters in the absence of the mechanical stresses in the rolled material. This effect formed a basis for developing a method of the deviator stress determination. The purpose of the study is to demonstrate the main advantages of the developed method against the known ultrasonic techniques used for evaluation of the mechanical stresses, give theoretical grounds to the effect which allows taking into account the heterogeneity of the material structure, and also to exemplify the procedure. An analytical expression is derived using bulk elastic wave velocity in an orthotropic material composed of cubic crystallites and an assumption on the existence of simple proportional relationship between the coefficients of the orientation distribution function in rolled metal. Presented results of the mathematical modeling confirm the experimentally observed linear dependence between the parameters ν31 and ν32 in the absence of mechanical stresses. The results of evaluating residual stresses in a welded steel plate are presented as an example of the applicability of the developed procedure. Data of ultrasonic technique and data of strain gage measurements are compared. The features of the described method of stress determination are marked and the applicability limits are specified.


Sign in / Sign up

Export Citation Format

Share Document