scholarly journals Flagged Littlewood-Richardson tableaux and branching rule for classical groups

2021 ◽  
Vol 181 ◽  
pp. 105419
Author(s):  
Il-Seung Jang ◽  
Jae-Hoon Kwon
2020 ◽  
Vol 2020 (765) ◽  
pp. 249-277 ◽  
Author(s):  
Dihua Jiang ◽  
Baiying Liu ◽  
Bin Xu

AbstractLet G be a group and let H be a subgroup of G. The classical branching rule (or symmetry breaking) asks: For an irreducible representation π of G, determine the occurrence of an irreducible representation σ of H in the restriction of π to H. The reciprocal branching problem of this classical branching problem is to ask: For an irreducible representation σ of H, find an irreducible representation π of G such that σ occurs in the restriction of π to H. For automorphic representations of classical groups, the branching problem has been addressed by the well-known global Gan–Gross–Prasad conjecture. In this paper, we investigate the reciprocal branching problem for automorphic representations of special orthogonal groups using the twisted automorphic descent method as developed in [13]. The method may be applied to other classical groups as well.


Author(s):  
Timothy C. Burness ◽  
Michael Giudici
Keyword(s):  

Author(s):  
R. H. EGGERMONT ◽  
A. SNOWDEN

AbstractDraisma recently proved that polynomial representations of GL∞ are topologically noetherian. We generalize this result to algebraic representations of infinite rank classical groups.


Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Christoph Hansknecht ◽  
Imke Joormann ◽  
Sebastian Stiller

The time-dependent traveling salesman problem (TDTSP) asks for a shortest Hamiltonian tour in a directed graph where (asymmetric) arc-costs depend on the time the arc is entered. With traffic data abundantly available, methods to optimize routes with respect to time-dependent travel times are widely desired. This holds in particular for the traveling salesman problem, which is a corner stone of logistic planning. In this paper, we devise column-generation-based IP methods to solve the TDTSP in full generality, both for arc- and path-based formulations. The algorithmic key is a time-dependent shortest path problem, which arises from the pricing problem of the column generation and is of independent interest—namely, to find paths in a time-expanded graph that are acyclic in the underlying (non-expanded) graph. As this problem is computationally too costly, we price over the set of paths that contain no cycles of length k. In addition, we devise—tailored for the TDTSP—several families of valid inequalities, primal heuristics, a propagation method, and a branching rule. Combining these with the time-dependent shortest path pricing we provide—to our knowledge—the first elaborate method to solve the TDTSP in general and with fully general time-dependence. We also provide for results on complexity and approximability of the TDTSP. In computational experiments on randomly generated instances, we are able to solve the large majority of small instances (20 nodes) to optimality, while closing about two thirds of the remaining gap of the large instances (40 nodes) after one hour of computation.


2006 ◽  
Vol 305 (2) ◽  
pp. 1212-1237
Author(s):  
John R. Britnell ◽  
Jason Fulman

2016 ◽  
Vol 28 (2) ◽  
pp. 177-192
Author(s):  
Haibo Hong ◽  
Licheng Wang ◽  
Haseeb Ahmad ◽  
Jun Shao ◽  
Yixian Yang

Sign in / Sign up

Export Citation Format

Share Document