Mesenchymal stem cells-derived vascular endothelial growth factor improves characteristics of endothelial progenitor cells

Cytotherapy ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. S36-S37
Author(s):  
D. Fauza ◽  
C.A. Lagonda ◽  
F.B. Tjahjadi ◽  
Y. Kusnadi
2016 ◽  
Vol 137 ◽  
pp. 92-96 ◽  
Author(s):  
Juan A. Gagliardi ◽  
Neiva Maciel ◽  
José L. Castellano ◽  
Osvaldo Masoli ◽  
Verónica Miksztowicz ◽  
...  

2013 ◽  
Vol 45 (21) ◽  
pp. 1021-1034 ◽  
Author(s):  
Brian R. Hoffmann ◽  
Jordan R. Wagner ◽  
Anthony R. Prisco ◽  
Agnieszka Janiak ◽  
Andrew S. Greene

Bone marrow-derived endothelial progenitor cells (BM-EPCs) are stimulated by vascular endothelial growth factor-A (VEGF-A) and other potent proangiogenic factors. During angiogenesis, an increase in VEGF-A expression stimulates BM-EPCs to enhance endothelial tube formation and contribute to an increase in microvessel density. Hypoxia is known to produce an enhanced angiogenic response and heightened levels of VEGF-A have been seen in oxygen deprived epithelial and endothelial cells, yet the pathways for VEGF-A signaling in BM-EPCs have not been described. This study explores the influence of hypoxia on VEGF-A signaling in rat BM-EPCs utilizing a novel proteomic strategy to directly identify interacting downstream components of the combined VEGF receptor(s) signaling pathways, gene expression analysis, and functional phenotyping. VEGF-A signaling network analysis following liquid chromatographic separation and tandem mass spectrometry revealed proteins related to inositol/calcium signaling, nitric oxide signaling, cell survival, cell migration, and inflammatory responses. Alterations in BM-EPC expression of common angiogenic genes and tube formation in response to VEGF-A during hypoxia were measured and combined with the proteomic analysis to enhance and support the signaling pathways detected. BM-EPC tube formation assays in response to VEGF-A exhibited little tube formation; however, a cell projection/migratory phenotype supported the signaling data. Additionally, a novel assay measuring BM-EPC incorporation into preformed endothelial cell tubes indicated a significant increase of incorporated BM-EPCs after pretreatment with VEGF-A during hypoxia. This study verifies known VEGF-A pathway components and reveals several unidentified mechanisms of VEGF-A signaling in BM-EPCs during hypoxia that may be important for migration to sites of vascular regeneration.


Sign in / Sign up

Export Citation Format

Share Document