Vascular Endothelial
Recently Published Documents





2021 ◽  
Vol 14 (12) ◽  
pp. 1820-1827
Guang-Hui He ◽  
Meng Dong ◽  
Song Chen ◽  
Yu-Chuan Wang ◽  

AIM: To determine the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells (hUCMSCs) on the expression of vascular endothelial growth factor A (VEGF-A) in human retinal vascular endothelial cells (HRECs). METHODS: Exosomes were isolated from hUCMSCs using cryogenic ultracentrifugation and characterized by transmission electron microscopy, Western blotting and nanoparticle tracking analysis. HRECs were randomly divided into a normal control group (group A), a high glucose model group (group B), a high glucose group with 25 μg/mL (group C), 50 μg/mL (group D), and 100 μg/mL exosomes (group E). Twenty-four hours after coculture, the cell proliferation rate was detected using flow cytometry, and the VEGF-A level was detected using immunofluorescence. After coculture 8, 16, and 24h, the expression levels of VEGF-A in each group were detected using PCR and Western blots. RESULTS: The characteristic morphology (membrane structured vesicles) and size (diameter between 50 and 200 nm) were observed under transmission electron microscopy. The average diameter of 122.7 nm was discovered by nanoparticle tracking analysis (NTA). The exosomal markers CD9, CD63, and HSP70 were strongly detected. The proliferation rate of the cells in group B increased after 24h of coculture. Immunofluorescence analyses revealed that the upregulation of VEGF-A expression in HRECs stimulated by high glucose could be downregulated by cocultured hUCMSC-derived exosomes (F=39.03, P<0.01). The upregulation of VEGF-A protein (group C: F=7.96; group D: F=17.29; group E: F=11.89; 8h: F=9.45; 16h: F=12.86; 24h: F=42.28, P<0.05) and mRNA (group C: F=4.137; group D: F=13.64; group E: F=22.19; 8h: F=7.253; 16h: F=16.98; 24h: F=22.62, P<0.05) in HRECs stimulated by high glucose was downregulated by cocultured hUCMSC-derived exosomes (P<0.05). CONCLUSION: hUCMSC-derived exosomes downregulate VEGF-A expression in HRECs stimulated by high glucose in time and concentration dependent manner.

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Prahara Yuri ◽  
Gunadi ◽  
Rahmadani P. Lestari ◽  
Firly P. Fardilla ◽  
Ishandono Dachlan

Abstract Background Hypospadias is a relatively common genital anomaly in humans, usually followed by inelastic dartos that causes penile chordee. Vascular endothelial growth factor (VEGF) is strongly linked to the viscoelasticity of tissues and their elastic phase. This study aimed to evaluate VEGF expressions in (1) fascia dartos between hypospadias and controls and (2) chordee severity. Methods This prospective cohort study involved 65 specimens from patients with hypospadias and ten specimens from controls. The samples were analyzed by quantitative real-time polymerase chain reaction (qPCR) for VEGF expression. Results The expressions of VEGF were not different between proximal and distal hypospadias patients and controls (fold change: distal − 0.25; fold change: proximal − 0.2; p = 0.664). The scaled expressions related to chordee severity were mild − 0.1; moderate 0.1; severe − 0.25 (p = 0.660). Conclusions VEGF expressions might not affect the severity of hypospadias and chordee, implying the pathogenesis is complex involving many growth factors. Further study with a larger sample size is necessary to clarify and confirm our findings.

2021 ◽  
pp. 112067212110580
Honghui Li ◽  
Jun Xie ◽  
Junwen Zeng ◽  
Juan Wu ◽  
Jin Zhou ◽  

This study investigated the effects of single nucleotide polymorphisms (SNPs) of the VEGF (vascular endothelial growth factor) gene, which are associated with susceptibility to age-related macular degeneration (AMD), on the expression of VEGF proteins (VEGF165 and VEGF165b) and their role in cell proliferation and apoptosis in human retinal vascular endothelial cells (hRVECs). Cell viability and VEGF165 and VEGF165b expressions were evaluated in hRVECs transfected with VEGF genes containing different SNPs (rs3025039, rs3025033, and rs10434). The Cell Counting Kit 8 assay, quantitative real-time PCR, western blotting, TUNEL assay, and enzyme-linked immunosorbent assay were used to examine the effects of VEGF gene SNPs on cell viability, VEGF165 and VEGF165b expressions, and cell apoptosis in hRVECs. The interaction and localization of the RNA-binding protein alternative splicing factor/splicing factor 2 (ASF/SF2) were assessed using RNA pull-down. Although VEGF165 expression decreased, VEGF165b levels increased significantly in hRVECs transfected with rs3025039, which decreased cell viability and induced apoptosis. The SNPs rs3025033 and rs10434 had no significant effects on VEGF165b protein production and apoptosis; however, they promoted cell proliferation. SNPs affected the interaction between RNA and ASF/SF2, a splicing factor for intron retention. Insulin-like growth factor-1 treatment induced the expression of VEGF165, but not VEGF165b, whereas SRPIN340 treatment, an inhibitor of ASF/SF2, increased VEGF165b protein levels. VEGF gene sequence variations affected hRVEC proliferation and apoptosis via alternative gene splicing. Thus, the regulation of splicing via ASF/SF2 could be a potential strategy in treating pathological neovascularization in patients with AMD.

2021 ◽  
Vol 21 ◽  
Wenjun Ding ◽  
Wenfang Tang ◽  
Jiajun Zhi

Background: Collagen and calcium-binding EGF domain-1 (CCBE1) is essential for the development of the lymphatic vasculature and colorectal cancer (CRC) lymphangiogenesis as it enhances the proteolytic process of vascular endothelial growth factor C (VEGFC) activating VEGFR3. The fully processed mature VEGFC could also activate VEGFR2, the important endothelial-specific receptor tyrosine kinase, involved in blood vascular development and tumor angiogenesis. However, the role of CCBE1 in cancer angiogenesis remains undefined. Methods: In this paper, we find that the protein expression of CCBE1 is higher in the primary CRC tissue with distant metastasis and positively correlated with blood vessel density. Results: The mRNA expression of CCBE1 is closely positively correlated with the vascular endothelial marker CD31 and VEGFR2 in CRC from TCGA datasets. The supernatant of the colorectal cancer cell line HCT116 with CCBE1 overexpression significantly promotes the tube formation ability of the human umbilical vein endothelial cells (HUVECs) in vitro and enhances angiogenesis and tumor growth in vivo. Knockdown of CCBE1 decreases the angiogenic ability of CRC. Conclusion: Our results demonstrate the angiogenic role of CCBE1 in CRC.

2021 ◽  
Hamideh Basiri ◽  
Seyed Sepehr Mohseni ◽  
Ali Abouei Mehrizi ◽  
Alireza Rajabnejadkeleshteri ◽  
Azadeh Ghaee ◽  

Samaneh Ghasemali ◽  
Safar Farajnia ◽  
Abolfazl Barzegar ◽  
Mohammad Rahmati-yamchi ◽  
Babak Negahdari ◽  

Background: Angiogenesis is a critical physiological process that plays a key role in tumor progression, metastatic dissemination, and invasion. In the last two decades, the vascular endothelial growth factor (VEGF) signaling pathway has been the area of extensive researches. VEGF executes its special effects by binding to vascular endothelial growth factor receptors (VEGFRs), particularly VEGFR-2. Objective: The inhibition of VEGF/VEGFR2 interaction is known as an effective cancer therapy strategy. The current study pointed to design and model an anti-VEGF peptide based on VEGFR2 binding regions. Method: The large-scale peptide mutation screening was used to achieve a potent peptide with high binding affinity to VEGF for possible application in inhibition of VEGF/VEGFR2 interaction. The AntiCP and Peptide Ranker servers were used to generate the possible peptides library with anticancer activities and prediction of peptides bioactivity. Then, the interaction of VEGF and all library peptides were analyzed using Hex 8.0.0 and ClusPro tools. A number of six peptides with favorable docking scores were achieved. All of the best docking scores of peptides in complexes with VEGF were evaluated to confirm their stability, using molecular dynamics simulation (MD) with the help of the GROMACS software package. Results: As a result, two antiangiogenic peptides with 13 residues of PepA (NGIDFNRDFFLGL) and PepC (NGIDFNRDKFLFL) were achieved and introduced to inhibit VEGF/VEGFR2 interactions. Conclusions: In summary, this study provided new insights into peptide-based therapeutics development for targeting VEGF signaling pathway in tumor cells. PepA and PepC are recommended as potentially promising anticancer agents for further experimental evaluations.

Sign in / Sign up

Export Citation Format

Share Document