composite scaffold
Recently Published Documents


TOTAL DOCUMENTS

702
(FIVE YEARS 252)

H-INDEX

55
(FIVE YEARS 14)

2022 ◽  
Vol 12 (3) ◽  
pp. 602-608
Author(s):  
Wuping Yao ◽  
Yuji Li ◽  
Zhi Liu ◽  
Liuyi Yao ◽  
Rui Liang ◽  
...  

Our study assesses the role of a scaffold constructed by co-culture of autologous oxygen-releasing biomimetic scaffold (AONS) and chondrocytes in joint repair after trauma. A composite scaffold structure was used and a scaffold constructed of AONS and chondrocytes was transplanted into SD rats to create models of patellar cartilage fracture and hip osteochondral fracture, respectively followed by analysis of cell proliferation by immunofluorescence method, osteogenesis-related gene expression by RT-PCR, chondrocytes apoptosis by TUNEL staining. The blank control group and AONS composite chondrocytes have significant differences in apoptosis and cell proliferation of two fracture types (P <0.05). The autologous oxygen-releasing nanometers at 4 and 8 weeks showed a significant difference in the number of PCNA and TUNEL cells between biomimetic scaffold and chondrocytes in two groups (P < 0.05). The AONS and chondrocytes were effective for two types of fractures at 1, 4 and 8 weeks. The expression of various markers of intrachondral osteogenesis was decreased and the markers of hip osteochondral fracture were increased significantly (P < 0.05). Joint recovery was better than patellar cartilage fractures. The AONS composite chondrocyte scaffold promotes repair of patellar cartilage fractures and hip osteochondral fractures with a better effect on hip osteochondral fractures.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Liying Sun ◽  
Shan Li ◽  
Kaifeng Yang ◽  
Junchao Wang ◽  
Zhengjun Li ◽  
...  

AbstractIn this study, we aimed at constructing polycaprolactone (PCL) reinforced keratin/bioactive glass composite scaffolds with a double cross-linking network structure for potential bone repair application. Thus, the PCL-keratin-BG composite scaffold was prepared by using keratin extracted from wool as main organic component and bioactive glass (BG) as main inorganic component, through both cross-linking systems, such as the thiol-ene click reaction between abundant sulfhydryl groups of keratin and the unsaturated double bond of 3-methacryloxy propyltrimethoxy silane (MPTS), and the amino-epoxy reaction between amino groups of keratin and the epoxy group in (3-glycidoxymethyl) methyldiethoxysilane (GPTMS) molecule, along with introduction of PCL as a reinforcing agent. The success of the thiol-ene reaction was verified by the FTIR and 1H-NMR analyses. And the structure of keratin-BG and PCL-keratin-BG composite scaffolds were studied and compared by the FTIR and XRD characterization, which indicated the successful preparation of the PCL-keratin-BG composite scaffold. In addition, the SEM observation, and contact angle and water absorption rate measurements demonstrated that the PCL-keratin-BG composite scaffold has interconnected porous structure, appropriate pore size and good hydrophilicity, which is helpful to cell adhesion, differentiation and proliferation. Importantly, compression experiments showed that, when compared with the keratin-BG composite scaffold, the PCL-keratin-BG composite scaffold increased greatly from 0.91 ± 0.06 MPa and 7.25 ± 1.7 MPa to 1.58 ± 0.21 MPa and 14.14 ± 1.95 MPa, respectively, which suggesting the strong reinforcement of polycaprolactone. In addition, the biomineralization experiment and MTT assay indicated that the PCL-keratin-BG scaffold has good mineralization ability and no-cytotoxicity, which can promote cell adhesion, proliferation and growth. Therefore, the results suggested that the PCL-keratin-BG composite scaffold has the potential as a candidate for application in bone regeneration field. Graphical Abstract


2022 ◽  
Vol 23 (2) ◽  
pp. 910
Author(s):  
Ji-Xin Li ◽  
Shu-Xiang Zhao ◽  
Yu-Qing Zhang

This paper describes the use of silk protein, including fibroin and sericin, from an alkaline solution of Ca(OH)2 for the clean degumming of silk, which is neutralized by sulfuric acid to create calcium salt precipitation. The whole sericin (WS) can not only be recycled, but completely degummed silk fibroin (SF) is also obtained in this process. The inner layers of sericin (ILS) were also prepared from the degummed silk in boiling water by 120 °C water treatment. When the three silk proteins (SPs) were individually grafted with glycidyl methacrylate (GMA), three grafted silk proteins (G-SF, G-WS, G-ILS) were obtained. After adding I2959 (a photoinitiator), the SP bioinks were prepared with phosphate buffer (PBS) and subsequently bioprinted into various SP scaffolds with a 3D network structure. The compressive strength of the SF/ILS (20%) scaffold added to G-ILS was 45% higher than that of the SF scaffold alone. The thermal decomposition temperatures of the SF/WS (10%) and SF/ILS (20%) scaffolds, mainly composed of a β-sheet structures, were 3 °C and 2 °C higher than that of the SF scaffold alone, respectively. The swelling properties and resistance to protease hydrolysis of the SP scaffolds containing sericin were improved. The bovine insulin release rates reached 61% and 56% after 5 days. The L929 cells adhered, stretched, and proliferated well on the SP composite scaffold. Thus, the SP bioinks obtained could be used to print different types of SP composite scaffolds adapted to a variety of applications, including cells, drugs, tissues, etc. The techniques described here provide potential new applications for the recycling and utilization of sericin, which is a waste product of silk processing.


2022 ◽  
Author(s):  
Yaping Wang ◽  
Zujian Feng ◽  
Xiang Liu ◽  
Chunfang Yang ◽  
Rui Gao ◽  
...  

Abstract Titanium alloy has been widely used in orthopedic surgeries as bone defect filling. However, the regeneration of high-quality new bones is limited due to the pro-inflammatory microenvironment around implants, resulting in a high occurrence rate of implant loosening or failure in osteological therapy. In this study, extracellular matrix (ECM)-mimetic polysaccharide hydrogel co-delivering BMP-2 and IL-4 was composited with 3D printed titanium alloy to promote the osseointegration and regulate macrophage response to create a pro-healing microenvironment in bone defect. Notably, it is discovered from the bioinformatics data that IL-4 and BMP-2 could affect each other through multiple signal pathways to achieve a synergistic effect towards osteogenesis. The composite scaffold significantly promoted the osteoblast differentiation and proliferation of human bone marrow mesenchyme stem cells (hBMSCs). The repair of large-scale femur defect in rat indicated that the dual-cytokine-delivered composite scaffold could manipulate a lower inflammatory level in situ by polarizing macrophages to M2 phenotype, resulting in superior efficacy of mature new bone regeneration over the treatment of native titanium alloy or that with an individual cytokine. Collectively, this work highlights the importance of M2-type macrophages-enriched immune-environment in bone healing. The biomimetic hydrogel-metal implant composite is a versatile and advanced scaffold for accelerating in vivo bone regeneration, holding great promise in treating orthopedic diseases.


2021 ◽  
pp. 2100416
Author(s):  
Wentao Shi ◽  
Lu Bian ◽  
Yiqing Wu ◽  
Zhe Wang ◽  
Yao Dai ◽  
...  

2021 ◽  
Author(s):  
Bin Wang ◽  
Farhad Chariyev-Prinz ◽  
Ross Burdis ◽  
Kian Eichholz ◽  
Daniel John Kelly

Abstract Biomimetic scaffolds that provide a tissue-specific environment to cells are particularly promising for tissue engineering and regenerative medicine applications. The goal of this study was to integrate emerging additive manufacturing and biomaterial design strategies to produce articular cartilage (AC) mimetic scaffolds that could be used as ‘off-the-shelf’ implants for joint regeneration. To this end alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize porous alginate-based scaffolds and to support the sustained release of transforming growth factor-β3 (TGF-β3). Covalent crosslinking dramatically improved the elasticity of the alginate/alginate sulfate scaffolds, while scaffold architecture could be tailored using a directional freezing technique. Introducing such an anisotropic architecture was found to promote mesenchymal stem cell (MSC) infiltration into the scaffold and to direct the orientation of the deposited extracellular matrix, leading to the development of cartilage tissue with a biomimetic zonal architecture. In vitro experiments also demonstrated the capacity of the sulfated scaffolds to both enhance chondrogenesis of MSCs and to control the release of TGF-β3, leading to the development of a tissue rich in sGAG and type II collagen. The scaffolds were further reinforced with a 3D printed PLCL framework, leading to composite implants that were more elastic than those reinforced with PCL, and which better mimicked the bulk mechanical properties of native cartilage tissue. The ability of this composite scaffold to support chondrogenesis was then confirmed within a dynamic culture system. Altogether, these findings demonstrate the potential of such biomimetic scaffolds as putative ‘single-stage’ or ‘off-the-shelf’ strategies for articular cartilage regeneration.


Sign in / Sign up

Export Citation Format

Share Document