A Beale-Kato-Majda criterion for three dimensional compressible viscous non-isentropic magnetohydrodynamic flows without heat-conductivity

2021 ◽  
Vol 280 ◽  
pp. 66-98
Author(s):  
Yongfu Wang
2010 ◽  
Vol 156-157 ◽  
pp. 1568-1573
Author(s):  
Hai Yong Liu ◽  
Hong Fu Qiang

Two structures of metallic thermal protection system(TPS) for hypersonic vehicle were presented. One model was a multi-layer construction and the other has cavities in the metallic layer. Numerical simulations were conducted on the three-dimensional TPS models using CFD software of Gambit and Fluent. Two heating temperatures of 1073K and 773K with constant temperature and isothermal boundary conditions were considered. Heat transfer was treated as single conductivity and thermal radiation effect was not involved. The results of simulation investigation showed that: The metallic layer had poor capability to restrict the heat conductivity. Heat was easier to transfer across the bracket into the internal part of the TPS. The ability of cavities in metallic layer to resist heat conductivity was limited. The temperature-heating time variation pattern was similar for different external heating temperature. Internal cooling was important for the TPS. The thermal radiation effect on the TPS would be focused in further research.


2018 ◽  
Vol 179 ◽  
pp. 01001
Author(s):  
Jie Wu

In this paper, we consider the Cauchy problem of non-stationary motion of heatconducting incompressible viscous fluids in ℝ3. About the heat-conducting incompressible viscous fluids, there are many mathematical researchers study the variants systems when the viscosity and heat-conductivity coefficient are positive. For the heat-conductive system, it is difficulty to get the better regularity due to the gradient of velocity of fluid own the higher order term. It is hard to control it. In order to get its global solutions, we must obtain the a priori estimates at first, then using fixed point theorem, it need the mapping is contracted. We can get a local solution, then applying the criteria extension. We can extend the local solution to the global solutions. For the two dimensional case, the Gagliardo-Nirenberg interpolation inequality makes use of better than the three dimensional situation. Thus, our problem will become more difficulty to handle. In this paper, we assume the coefficient of viscosity is a constant and the coefficient of heat-conductivity satisfying some suitable conditions. We show that the Cauchy problem has a global-in-time strong solution (u,θ) on ℝ3 ×(0, ∞).


1998 ◽  
Vol 40 (3) ◽  
pp. 528-531 ◽  
Author(s):  
V. N. Bogomolov ◽  
N. F. Kartenko ◽  
L. S. Parfen’eva ◽  
A. V. Prokof’ev ◽  
I. A. Smirnov ◽  
...  

2016 ◽  
Vol 685 ◽  
pp. 607-610 ◽  
Author(s):  
Aleksander S. Ivashutenko ◽  
Nikita V. Martyushev ◽  
Yuriy Yu. Drozdov

The paper presents the experimental material on obtaining and researching of three-dimensional composite heat-conducting copper-diamond materials in the system of spark plasma sintering. Earlier [1-5], it was established that in order to achieve the effect of the increased heat conductivity of a composite it is necessary to create the conditions hindering the movement of heat flux on the interface boundary. In this work we have attempted to obtain the material with heat conductivity higher than that of pure copper due to addition of diamond powder and synthesis of the composite in the system of spark plasma sintering. For comparison, we have considered copper and diamond compositions in the ratios of 50/50 and 40/60 correspondingly. The results of the heat conductivity analysis have not exceeded the indices of pure copper; however, according to SEM data, it has been found that at SPS-sintering local domains with enhanced adhesion form on the surfaces of diamonds.


Sign in / Sign up

Export Citation Format

Share Document