Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity

2022 ◽  
Vol 306 ◽  
pp. 569-589
Author(s):  
Hui Yang ◽  
Yuzhu Han
Keyword(s):  
Blow Up ◽  
2021 ◽  
Vol 57 ◽  
pp. 103195
Author(s):  
Wei Dai ◽  
Hideo Kubo ◽  
Motohiro Sobajima
Keyword(s):  
Blow Up ◽  

Author(s):  
Mohammad Shahrouzi ◽  
Jorge Ferreira ◽  
Erhan Pişkin

In this paper we consider a viscoelastic double-Kirchhoff type wave equation of the form $$ u_{tt}-M_{1}(\|\nabla u\|^{2})\Delta u-M_{2}(\|\nabla u\|_{p(x)})\Delta_{p(x)}u+(g\ast\Delta u)(x,t)+\sigma(\|\nabla u\|^{2})h(u_{t})=\phi(u), $$ where the functions $M_{1},M_{2}$ and $\sigma, \phi$ are real valued functions and $(g\ast\nabla u)(x,t)$ is the viscoelastic term which are introduced later. Under appropriate conditions for the data and exponents, the general decay result and blow-up of solutions are proved with positive initial energy. This study extends and improves the previous results in the literature to viscoelastic double-Kirchhoff type equation with degenerate nonlocal damping and variable-exponent nonlinearities.


2012 ◽  
Vol 5 (4) ◽  
pp. 777-829 ◽  
Author(s):  
Matthieu Hillairet ◽  
Pierre Raphaël
Keyword(s):  
Blow Up ◽  

2019 ◽  
Vol 19 (4) ◽  
pp. 639-675
Author(s):  
Thierry Cazenave ◽  
Yvan Martel ◽  
Lifeng Zhao

AbstractWe prove that any sufficiently differentiable space-like hypersurface of {{\mathbb{R}}^{1+N}} coincides locally around any of its points with the blow-up surface of a finite-energy solution of the focusing nonlinear wave equation {\partial_{tt}u-\Delta u=|u|^{p-1}u} on {{\mathbb{R}}\times{\mathbb{R}}^{N}}, for any {1\leq N\leq 4} and {1<p\leq\frac{N+2}{N-2}}. We follow the strategy developed in our previous work (2018) on the construction of solutions of the nonlinear wave equation blowing up at any prescribed compact set. Here to prove blow-up on a local space-like hypersurface, we first apply a change of variable to reduce the problem to blowup on a small ball at {t=0} for a transformed equation. The construction of an appropriate approximate solution is then combined with an energy method for the existence of a solution of the transformed problem that blows up at {t=0}. To obtain a finite-energy solution of the original problem from trace arguments, we need to work with {H^{2}\times H^{1}} solutions for the transformed problem.


Sign in / Sign up

Export Citation Format

Share Document