Aging effects on posture-related modulation of stretch reflex excitability in the ankle muscles in humans

2012 ◽  
Vol 22 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Hiroki Obata ◽  
Noritaka Kawashima ◽  
Tatsuyuki Ohtsuki ◽  
Kimitaka Nakazawa
2010 ◽  
Vol 20 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Hiroki Obata ◽  
Noritaka Kawashima ◽  
Masami Akai ◽  
Kimitaka Nakazawa ◽  
Tatsuyuki Ohtsuki

2008 ◽  
Vol 105 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Tetsuya Ogawa ◽  
Gee Hee Kim ◽  
Hirofumi Sekiguchi ◽  
Masami Akai ◽  
Shuji Suzuki ◽  
...  

Author(s):  
Salvatore Rotondo ◽  
Rodina Sadek ◽  
Narmin Mekawy ◽  
Monir Arnos ◽  
Abdeslem El Idrissi

Author(s):  
Christina W.Y. Hui-Chan ◽  
Mindy F. Levin

ABSTRACT:Low-intensity repetitive electrical stimulation such as dorsal column and transcutaneous electrical nerve stimulation (TENS) reportedly decreases spasticity and improves voluntary motor control. However, the mechanisms mediating these effects are unclear. Recent findings suggest that spasticity may be characterized more appropriately by a decrease in the stretch reflex threshold than by an increase in gain. Our objectives were: (1) to examine possible changes in stretch reflex excitability following 45 min of TENS, (2) to map out the time course of possible post-stimulation effects via both latency and magnitude (amplitude or area) measurements, and (3) to determine the role of segmental versus non-segmental mechanisms involved in mediating these changes. The effects of 45 min of segmentally and heterosegmentally applied TENS on lower limb reflexes in ten spastic hemiparetic subjects were contrasted with those resulting from placebo stimulation. We found that both segmentally and heterosegmentally applied TENS caused an immediate increase in soleus H reflex latencies that was evident for up to 60 minutes post-stimulation in over 75% of the subjects. Similar increases for up to 60 and 40 minutes post-stimulation was noted for the stretch reflex latencies in 50% and 67% of the subjects respectively for segmental and heterosegmental stimulation. These results suggested that manipulation of segmental and heterosegmental afférents for 45 min may lead to a decrease of the otherwise augmented stretch reflex excitability accompanying hemiparetic spasticity.


2012 ◽  
Vol 112 (10) ◽  
pp. 3641-3648 ◽  
Author(s):  
Tetsuya Ogawa ◽  
Noritaka Kawashima ◽  
Shuji Suzuki ◽  
Kimitaka Nakazawa

2004 ◽  
Vol 96 (2) ◽  
pp. 604-611 ◽  
Author(s):  
Kimitaka Nakazawa ◽  
Noritaka Kawashima ◽  
Masami Akai ◽  
Hideo Yano

Recent studies have revealed that the stretch reflex responses of both ankle flexor and extensor muscles are coaugmented in the early stance phase of human walking, suggesting that these coaugmented reflex responses contribute to secure foot stabilization around the heel strike. To test whether the reflex responses mediated by the stretch reflex pathway are actually induced in both the ankle flexor and extensor muscles when the supportive surface is suddenly destabilized, we investigated the electromyographic (EMG) responses induced after a sudden drop of the supportive surface at the early stance phase of human walking. While subjects walked on a walkway, the specially designed movable supportive surface was unexpectedly dropped 10 mm during the early stance phase. The results showed that short-latency reflex EMG responses after the impact of the drop (<50 ms) were consistently observed in both the ankle flexor and extensor muscles in the perturbed leg. Of particular interest was that a distinct response appeared in the tibialis anterior muscle, although this muscle showed little background EMG activity during the stance phase. These results indicated that the reflex activities in the ankle muscles certainly acted when the supportive surface was unexpectedly destabilized just after the heel strike during walking. These reflex responses were most probably mediated by the facilitated stretch reflex pathways of the ankle muscles at the early stance phase and were suggested to be relevant to secure stabilization around the ankle joint during human walking.


1999 ◽  
Vol 9 (5) ◽  
pp. 379-383
Author(s):  
Nicole Paquet ◽  
Christina W.Y. Hui-Chan

The modulation of soleus (SO) H-reflex excitability during dynamic whole head-and-body tilts (WHBT) was investigated in normal healthy subjects. Between 30 and 70 ms, and 151 and 190 ms after head acceleration onset, the H-reflex amplitude was smaller than during quiet standing by 7.6% ( p < 0.01) and 15.4% ( p = 0.06) respectively. This finding suggested that dynamic WHBT reduced the excitability of the predominantly monosynaptic stretch reflex arc in the majority of the subjects studied.


2004 ◽  
Vol 180 (1) ◽  
pp. 99-105 ◽  
Author(s):  
N. Kawashima ◽  
K. Nakazawa ◽  
S.-I. Yamamoto ◽  
D. Nozaki ◽  
M. Akai ◽  
...  

1996 ◽  
Vol 75 (2) ◽  
pp. 620-628 ◽  
Author(s):  
J. F. Miller ◽  
K. D. Paul ◽  
R. H. Lee ◽  
W. Z. Rymer ◽  
C. J. Heckman

1. The decerebrate cat preparation with an intact spinal cord is characterized by a high degree of excitability in extensor motoneuron pools, which is eliminated by acute spinalization. Subtype-specific agonists for serotonin (5-HT) were investigated in terms of their effectiveness in restoring the extensor excitability following spinalization. 2. Our hypothesis was that 5-HT2 receptors have the primary role in enhancement of extensor reflex excitability, whereas 5-HT1A and 5-HT1B/D receptors are relatively unimportant. Reflex excitability was assessed from the tonic levels of force and electromyographic (EMG) output from the ankle extensors medial gastrocnemius (MG) and soleus (SOL), and from the reflex forces in both these muscles generated by ramp-and-hold stretches of MG. 3. Before spinal transection, MG and SOL usually exhibited a small amount of tonic background EMG activity and force output. Ramp-and-hold stretch of MG generated a large-amplitude reflex response. Spinal transection at the level of T10 virtually abolished tonic background activity in both extensors and greatly attenuated the MG stretch reflex. Ventral topical application of the selective 5-HT2A/2C agonist (+-)-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane hydrochloride (DOI) restored the amplitude of the MG stretch reflex in a dose-dependent fashion. However, a considerable portion of the DOI-mediated restoration of MG stretch reflex force was due to elevation of tonic background force levels above previous intact cord levels. 4. The DOI-induced increase in extensor tonic background excitability and facilitation of MG stretch reflex were reversed by ventral topical administration of the selective 5-HT2 antagonist ketanserin. No increase in extensor excitability was observed in spinalized preparations after administration of either the 5-HT1A agonist (+-)-8-hydroxy-dipropylaminotetralin hydrobromide or the 5-HT1B/1D agonist 7-trifluoromethyl-4-(4 methyl-1-piperazinyl)-pyrrolo[1,2- a]quinoxaline maleate. These data strongly suggest that the DOI-induced facilitation of extensor stretch reflex and tonic activity in spinalized preparations is mediated through an action on spinal 5-HT2 receptors. 5. One important difference between the actions of DOI in spinalized versus intact states was that the DOI-induced tonic and reflex forces in the spinalized state were subject to irregular oscillations. In contrast, DOI did not noticeably affect the smoothness of reflex force generation in the intact state. This discrepancy was probably due to the effects of clasp knife inhibition from muscular free nerve endings, which have potent reflex actions in the spinalized but not intact states. Thus DOI elevated excitability levels but did not alter the effects of spinalization on stretch reflex patterns.


Sign in / Sign up

Export Citation Format

Share Document