spinal stretch reflex
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 1)

2019 ◽  
Vol 122 (1) ◽  
pp. 435-446 ◽  
Author(s):  
N. Mrachacz-Kersting ◽  
U. G. Kersting ◽  
P. de Brito Silva ◽  
Y. Makihara ◽  
L. Arendt-Nielsen ◽  
...  

Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Christian Riis Forman ◽  
Christian Svane ◽  
Christina Kruuse ◽  
Jean-Michel Gracies ◽  
Jens Bo Nielsen ◽  
...  

Abstract Individuals with lesions of central motor pathways frequently suffer from sustained involuntary muscle activity. This symptom shares clinical characteristics with dystonia but is observable in individuals classified as spastic. The term spastic dystonia has been introduced, although the underlying mechanisms of involuntary activity are not clarified and vary between individuals depending on the disorder. This study aimed to investigate the nature and pathophysiology of sustained involuntary muscle activity in adults with cerebral palsy and stroke. Seventeen adults with cerebral palsy (Gross Motor Function Classification System I–V), 8 adults with chronic stroke and 14 control individuals participated in the study. All individuals with cerebral palsy or stroke showed increased resistance to passive movement with Modified Ashworth Scale >1. Two-minute surface EMG recordings were obtained from the biceps muscle during attempted rest in three positions of the elbow joint; a maximally flexed position, a 90-degree position and a maximally extended position. Cross-correlation analysis of sustained involuntary muscle activity from individuals with cerebral palsy and stroke, and recordings of voluntary isometric contractions from control individuals were performed to examine common synaptic drive. In total, 13 out of 17 individuals with cerebral palsy and all 8 individuals with stroke contained sustained involuntary muscle activity. In individuals with cerebral palsy, the level of muscle activity was not affected by the joint position. In individuals with stroke, the level of muscle activity significantly (P < 0.05) increased from the flexed position to the 90 degree and extended position. Cumulant density function indicated significant short-term synchronization of motor unit activities in all recordings. All groups exhibited significant coherence in the alpha (6–15 Hz), beta (16–35 Hz) and early gamma band (36–60 Hz). The cerebral palsy group had lower alpha band coherence estimates, but higher gamma band coherence estimates compared with the stroke group. Individuals with increased resistance to passive movement due to cerebral palsy or stroke frequently suffer sustained involuntary muscle activity, which cannot exclusively be described by spasticity. The sustained involuntary muscle activity in both groups originated from a common synaptic input to the motor neuron pool, but the generating mechanisms could differ between groups. In cerebral palsy it seemed to originate more from central mechanisms, whereas peripheral mechanisms likely play a larger role in stroke. The sustained involuntary muscle activity should not be treated simply like the spinal stretch reflex mediated symptom of spasticity and should not either be treated identically in both groups.


2018 ◽  
Author(s):  
Jeffrey Weiler ◽  
Paul L Gribble ◽  
J. Andrew Pruszynski

AbstractMotor behaviour is most efficiently controlled by only correcting disturbances or deviations that influence task success. It is currently thought that such sophisticated control is computed within a transcortical feedback pathway. Here we show that even the fastest spinal feedback pathway can produce corrective responses that adhere to this control scheme. We first applied small mechanical perturbations that flexed the elbow joint – stretching the triceps muscle – and simultaneously flexed or extended the wrist joint, displacing the hand various distances away from a central target. We then changed the arm’s orientation and applied the same joint perturbations, which reversed the mapping between joint motion and hand displacement. In all cases, we found that the triceps’ spinal stretch reflex was tuned to the hand’s displacement relative to the target, and not how the triceps muscle was stretched. Our findings reveal that the fastest spinal feedback pathway is capable of integrating and modulating feedback from multiple muscles to produce efficient corrective responses, forcing a re-evaluation of the how the nervous system derives the sophisticated control laws that support natural motor behaviour.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650043 ◽  
Author(s):  
Yuan Yang ◽  
Teodoro Solis-Escalante ◽  
Jun Yao ◽  
Frans C. T. van der Helm ◽  
Julius P. A. Dewald ◽  
...  

Communication between neuronal populations is facilitated by synchronization of their oscillatory activity. Although nonlinearity has been observed in the sensorimotor system, its nonlinear connectivity has not been widely investigated yet. This study investigates nonlinear connectivity during the human stretch reflex based on neuronal synchronization. Healthy participants generated isotonic wrist flexion while receiving a periodic mechanical perturbation to the wrist. Using a novel cross-frequency phase coupling metric, we estimate directional nonlinear connectivity, including time delay, from the perturbation to brain and to muscle, as well as from brain to muscle. Nonlinear phase coupling is significantly stronger from the perturbation to the muscle than to the brain, with a shorter time delay. The time delay from the perturbation to the muscle is 33 ms, similar to the reported latency of the spinal stretch reflex at the wrist. Source localization of nonlinear phase coupling from the brain to the muscle suggests activity originating from the motor cortex, although its effect on the stretch reflex is weak. As such nonlinear phase coupling between the perturbation and muscle activity is dominated by the spinal reflex loop. This study provides new evidence of nonlinear neuronal synchronization in the stretch reflex at the wrist joint with respect to spinal and transcortical loops.


2015 ◽  
Vol 113 (7) ◽  
pp. 2232-2241 ◽  
Author(s):  
Chadwick B. Boulay ◽  
Xiang Yang Chen ◽  
Jonathan R. Wolpaw

Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5–30 Hz), low γ (γ1; 40–85 Hz), and high γ (γ2; 100–200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs.


2015 ◽  
Vol 113 (5) ◽  
pp. 1598-1615 ◽  
Author(s):  
Samira P. Bandaru ◽  
Shujun Liu ◽  
Stephen G. Waxman ◽  
Andrew M. Tan

Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.


2014 ◽  
Vol 112 (6) ◽  
pp. 1439-1446 ◽  
Author(s):  
Yukiko Makihara ◽  
Richard L. Segal ◽  
Jonathan R. Wolpaw ◽  
Aiko K. Thompson

In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion.


2013 ◽  
Vol 110 (4) ◽  
pp. 899-906 ◽  
Author(s):  
Brian C. Horslen ◽  
Chantelle D. Murnaghan ◽  
J. Timothy Inglis ◽  
Romeo Chua ◽  
Mark G. Carpenter

Standing balance is often threatened in everyday life. These threats typically involve scenarios in which either the likelihood or the consequence of falling is higher than normal. When cats are placed in these scenarios they respond by increasing the sensitivity of muscle spindles imbedded in the leg muscles, presumably to increase balance-relevant afferent information available to the nervous system. At present, it is unknown whether humans also respond to such postural threats by altering muscle spindle sensitivity. Here we present two studies that probed the effects of postural threat on spinal stretch reflexes. In study 1 we manipulated the threat associated with an increased consequence of a fall by having subjects stand at the edge of an elevated surface (3.2 m). In study 2 we manipulated the threat by increasing the likelihood of a fall by occasionally tilting the support surface on which subjects stood. In both scenarios we used Hoffmann (H) and tendon stretch (T) reflexes to probe the spinal stretch reflex circuit of the soleus muscle. We observed increased T-reflex amplitudes and unchanged H-reflex amplitudes in both threat scenarios. These results suggest that the synaptic state of the spinal stretch reflex is unaffected by postural threat and that therefore the muscle spindles activated in the T-reflexes must be more sensitive in the threatening conditions. We propose that this increase in sensitivity may function to satisfy the conflicting needs to restrict movement with threat, while maintaining a certain amount of sensory information related to postural control.


2012 ◽  
Vol 112 (10) ◽  
pp. 3641-3648 ◽  
Author(s):  
Tetsuya Ogawa ◽  
Noritaka Kawashima ◽  
Shuji Suzuki ◽  
Kimitaka Nakazawa

2010 ◽  
Vol 121 ◽  
pp. S318
Author(s):  
H. Obata ◽  
D. Nozaki ◽  
S. Yamamoto ◽  
T. Komeda ◽  
N. Kawashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document