reflex amplitude
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 9)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Behdad Parhizi ◽  
Trevor S. Barss ◽  
Vivian K. Mushahwar

Coupling between cervical and lumbar spinal networks (cervico-lumbar coupling) is vital during human locomotion. Impaired cervico-lumbar coupling after neural injuries or diseases can be reengaged via simultaneous arm and leg cycling training. Sensorimotor circuitry including cervico-lumbar coupling may further be enhanced by non-invasive modulation of spinal circuity using transcutaneous spinal cord stimulation (tSCS). This project aimed to determine the effect of cervical, lumbar, or combined tSCS on spinal reflex (Hoffmann [H-]) and corticospinal (motor evoked potential [MEP]) excitability during a static or cycling cervico-lumbar coupling task. Fourteen neurologically intact study participants were seated in a recumbent leg cycling system. H-reflex and MEP amplitudes were assessed in the left flexor carpi radialis (FCR) muscle during two tasks (Static and Cycling) and four conditions: (1) No tSCS, (2) tSCS applied to the cervical enlargement (Cervical); (3) tSCS applied to the lumbar enlargement (Lumbar); (4) simultaneous cervical and lumbar tSCS (Combined). While cervical tSCS did not alter FCR H-reflex amplitude relative to No tSCS, lumbar tSCS significantly facilitated H-reflex amplitude by 11.1%, and combined cervical and lumbar tSCS significantly enhanced the facilitation to 19.6%. Neither cervical nor lumbar tSCS altered MEP amplitude alone (+4.9 and 1.8% relative to legs static, No tSCS); however, combined tSCS significantly increased MEP amplitude by 19.7% compared to No tSCS. Leg cycling alone significantly suppressed the FCR H-reflex relative to static, No tSCS by 13.6%, while facilitating MEP amplitude by 18.6%. When combined with leg cycling, tSCS was unable to alter excitability for any condition. This indicates that in neurologically intact individuals where interlimb coordination and corticospinal tract are intact, the effect of leg cycling on cervico-lumbar coupling and corticospinal drive was not impacted significantly with the tSCS intensity used. This study demonstrates, for the first time, that tonic activation of spinal cord networks through multiple sites of tSCS provides a facilitation of both spinal reflex and corticospinal pathways. It remains vital to determine if combined tSCS can influence interlimb coupling after neural injury or disease when cervico-lumbar connectivity is impaired.


2021 ◽  
pp. 19-22
Author(s):  
Andriy V. Maznychenko ◽  
Xing Yang ◽  
Marcin Dornowski ◽  
Andriy V. Gorkovenko ◽  
Olena V. Kolosova ◽  
...  

Effect of 5-weeks running training on modulation of the H-reflex amplitude on soleus muscle in non-trained men was studied. It was established that modulation of the H-reflex amplitude occurs in two phases. In the course of the first 3 weeks of running training (first phase) statistically significant (p < 0.05) increase in H-reflex amplitudes and the maximum H-reflex to the maximum M-response amplitudes ratio (10%) were registered. In contrast to the first phase, decrease in investigated parameters up to initial values were observed during the next 2 weeks of the training (second phase). An increase in the of the soleus H-reflex amplitude, is probably due to the enhanced drive in descending pathways, increased motoneuron excitability and changes in presynaptic Ia afferent inhibition, whereas decrease in the amplitude of the H-reflex might occurs presumably due to motor learning. Apparently, that the repetitive task, which automatically performed and controlled on a spinal or brainstem level can be reflected in the normalization and stabilization of the H-reflexes registered after running training in later period.


Concussion ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. CNC82
Author(s):  
Rachel Eshima McKay ◽  
Michael A Kohn ◽  
Elliot S Schwartz ◽  
Merlin D Larson

Background: Pupillometers have been proposed as clinical assessment tools. We compared two pupillometers to assess measurement agreement. Materials & methods: We enrolled 30 subjects and simultaneously measured the pupil diameter and light reflex amplitude with an iPhone pupillometer and a portable infrared pupillometer. We then enrolled 40 additional subjects and made serial measurements with each device. Results: Failure occurred in 30% of attempts made with the iPhone pupillometer compared with 4% of attempts made with the infrared pupillometer (Fisher’s exact p = 0.0001). Method comparison of the two devices used simultaneously showed significant disagreement in dynamic measurements. Conclusion: The iPhone pupillometer had poor repeatability and suggests that it is not a practical tool to support clinical decisions.


2020 ◽  
Vol 8 (4) ◽  
pp. 48
Author(s):  
Hamad S. Al Amer ◽  
Mohamed A. Sabbahi ◽  
Sharon L. Olson

The Soleus (SOL) Hoffmann reflex (H-reflex) is commonly recorded in sitting position. However, the reliability of recording is unknown. We assessed the reliability of SOL H-reflex amplitude measurements across multiple traces and sessions during erect, slumped, and slouched sitting postures using the generalizability theory. Five traces of the SOL H-reflex maximum amplitude (Hmax) were recorded from 10 healthy participants during erect, slumped, and slouched sitting postures in two sessions. A decision study analysis was then conducted to calculate the reliability coefficients of the Hmax for five traces and two sessions and to mathematically calculate the coefficients for seven and ten traces, and one and three sessions in the three sitting postures. For five traces and two sessions, the results showed reliability coefficients between 0.970 and 0.971, 0.980 and 0.979, and equal to 0.943 for erect, slumped, and slouched sitting, respectively. Averaging five traces of the Hmax in a single recording session was sufficient to obtain acceptable reliability in the three sitting postures (reliability range, 0.892–0.988). It was concluded that the SOL Hmax can be recorded during erect, slumped, and slouched sitting postures with adequate reliability.


2019 ◽  
Author(s):  
Tunc Akbas ◽  
Kyoungsoon Kim ◽  
Kathleen Doyle ◽  
Kathleen Manella ◽  
Robert Lee ◽  
...  

AbstractStiff-knee gait (SKG) after stroke is often accompanied by decreased knee flexion angle during the swing phase. The decreased knee flexion has been hypothesized to originate from excessive quadriceps activation. However, it is unclear whether this activation is due to poor timing or hyperreflexia, both common post-stroke impairments. The goal of this study was to investigate the relation between quadriceps hyperreflexia in post-stroke SKG with knee flexion angle during walking. The rectus femoris (RF) H-reflex was recorded in eleven participants with post-stroke SKG and ten healthy controls during standing and walking during toe-off. In order to separate the effects of poorly timed quadriceps muscle activation from hyperreflexia, healthy individuals voluntarily increased quadriceps activity using RF electromyographic (EMG) biofeedback during standing and pre-swing upon H-reflex stimulation. We observed a negative correlation (R = −0.92, p=0.001) between knee flexion angle and RF H-reflexes in post-stroke SKG. In contrast, H-reflex amplitude in healthy individuals in presence (R = 0.47, p = 0.23) or absence (R = −0.17, p = 0.46) of increased RF activity had no correlation with knee flexion angle. The RF H-reflex amplitude differed between standing and walking in healthy individuals, including when RF activity was increased voluntarily (d = 2.86, p = 0.007), but was not observed post-stroke (d =0.73, p = 0.296). Thus, RF reflex modulation is impaired in post-stroke SKG. Further, RF hyperreflexia, as opposed to overactivity, may play a role in knee flexion kinematics in post-stroke SKG. Interventions targeting self-regulated quadriceps hyperreflexia may be effective in promoting better neural control of the knee joint and thus better quality of walking post-stroke.


Author(s):  
Maria Fernanda Chaim Correia ◽  
Leonardo Abdala Elias ◽  
Carina Marconi Germer ◽  
Luciana Sobral Moreira

The H (Hoffman) reflex is a noninvasive technique used to evaluate the synaptic organization of the spinal cord, as well as the excitability of the reflex arc. In this procedure, percutaneous electrical stimuli are applied to the peripheral nerve to evoke reflex responses that can be measured by the electromyogram of the target muscle. Different factors can modulate the H-reflex amplitude. Nonetheless, few studies have investigated how contraction intensity influence the excitability of spinal cord circuits controlling upper limb muscle. Therefore, the present project is aimed at investigating the effect of contraction intensity on the excitability of spinal cord circuits of a hand muscle.


2018 ◽  
Vol 120 (6) ◽  
pp. 3172-3186 ◽  
Author(s):  
R. Zhou ◽  
B. Parhizi ◽  
J. Assh ◽  
L. Alvarado ◽  
R. Ogilvie ◽  
...  

Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.


Sign in / Sign up

Export Citation Format

Share Document