Nappe flows on a stepped chute with prototype-scale steps height: Observations of flow patterns, air-water flow properties, energy dissipation and dissolved oxygen

2019 ◽  
Vol 27 ◽  
pp. 1-19 ◽  
Author(s):  
Stefan Felder ◽  
Margaux Geuzaine ◽  
Benjamin Dewals ◽  
Sebastien Erpicum
2002 ◽  
Vol 29 (1) ◽  
pp. 145-156 ◽  
Author(s):  
H Chanson ◽  
L Toombes

Stepped spillways have been used for about 3500 years. The last few decades have seen the development of new construction materials, design techniques, and applications, for example, embankment overtopping protection systems. Although it is commonly acknowledged that free-surface aeration is significant in stepped chutes, experimental data are scarce, often limited to very steep slopes (α ~ 50°). This paper presents an experimental study conducted in a large-size stepped chute (α = 22°, h = 0.1 m, W = 1 m). Observations demonstrate the existence of a transition flow pattern for intermediate flow rates between nappe and skimming flows. Detailed air–water flow measurements were conducted in both transition and skimming flows, immediately downstream of the inception point of free-surface aeration where uniform equilibrium flow conditions were not achieved. In skimming flows, a complete characterization is developed for the distributions of void fraction, bubble count rate, and velocity, and flow resistance data are compared with other studies. Transition flows exhibit significantly different air–water flow properties. They are highly aerated, requiring the design of comparatively high chute sidewalls.Key words: stepped spillway, air entrainment, two-phase flow properties, skimming flow, transition flow.


Author(s):  
Laura Montano ◽  
Stefan Felder

Abstract Novel air-water flow measurements were conducted in fully aerated hydraulic jumps with partially and fully developed supercritical inflow conditions. Irrespective of the inflow conditions, the hydraulic jumps resembled typical flow patterns with strong aeration and instabilities, albeit hydraulic jumps with fully developed inflow conditions had a more upwards directed roller motion and a larger clear water core in the second half of the roller. Hydraulic jumps with fully developed inflow conditions had comparatively larger void fractions in the first half of the jump roller and larger bubble count rates throughout, while a comparatively larger number of smaller bubble sizes suggested a stronger break-up of bubbles. This was consistent with slightly larger interfacial velocities and turbulence intensities in the first half of the jump roller with fully developed inflow conditions. An assessment of the required sampling duration for air-water flow properties indicated the requirement to sample for at least five times longer duration than applied in previous studies. These results highlighted the need to carefully consider the inflow conditions and sampling parameters for aerated hydraulic jumps.


2013 ◽  
Vol 40 (4) ◽  
pp. 361-372 ◽  
Author(s):  
S. Felder ◽  
H. Chanson

Air–water flows on stepped spillways were investigated experimentally in the last decades with a focus on steep slope chutes equipped with flat horizontal steps. Detailed air–water flow properties were recorded herein with three stepped geometries down a slope of θ = 8.9° with: flat horizontal steps, pooled steps, and a combination of flat and pooled steps. The data included the distributions of basic air–water flow properties, as well as the energy dissipation and flow resistance data deduced from the air–water flow measurements. The results on the flat slope showed that the pooled stepped design enabled a greater rate of energy dissipation, but the pooled stepped geometries were affected by some flow instabilities and unsteady flow processes for a range of flow rates.


2008 ◽  
Vol 35 (9) ◽  
pp. 865-880 ◽  
Author(s):  
G. Carosi ◽  
H. Chanson

The stepped spillway design is characterized by an increase in the rate of energy dissipation on the chute associated with a reduction of the size of the downstream energy dissipation system. This study presents a thorough investigation of the air–water flow properties in skimming flows with a focus on the turbulent characteristics. New measurements were conducted in a large-size facility (θ = 22°; step height, h = 0.1 m) with several phase-detection intrusive probes. Correlation analyses were applied to estimate the integral turbulent length and time scales. The skimming flow properties presented some basic characteristics that were qualitatively and quantitatively in agreement with previous air–water flow measurements in skimming flows. Present measurements showed some relatively good correlation between turbulence intensities T u and turbulent length and time scales. These measurements also illustrated large turbulence levels and large turbulent time and length scales in the intermediate region between the spray and bubbly flow regions.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Augustine Chung Wei Yap ◽  
Hwang Sheng Lee ◽  
Joo Ling Loo ◽  
Nuruol Syuhadaa Mohd

AbstractpH, oxidation-reduction potential (ORP) and dissolved oxygen (DO) concentration are important parameters in water quality surveillance and treatment. The changes of these parameters are associated with electron density in water. Several techniques including electrolysis and catalysis which require redox reactions and electron exchange are employed to improve these parameters. In recent years, studies reported that magnetic effects can impart considerable changes on the pH, ORP and DO concentration of water. However, the correlation between electron density and magnetic effects on these parameters has yet to be disclosed despite the fact that increased electron density in water could improve water’s reductive properties, heat capacity and hydrogen bonding characteristics. In this study, the magnetic effects on pH, ORP and DO concentration were investigated using different magnets arrangements and water flow rates based on reversed electric motor principle. Results showed that the improvement of pH, ORP and DO concentration from 5.40–5.42 to 5.58–5.62 (+ 3.5%), 392 to 365 mV (− 6.9%), and 7.30 to 7.71 mg L− 1 (+ 5.6%), respectively were achieved using combined variables of non-reversed polarity magnet arrangement (1000–1500 G magnetic strength) and water flow rate of 0.1–0.5 mL s− 1. Such decrement in ORP value also corresponded to 8.0 × 1013 number of electron generation in water. Furthermore, Raman analysis revealed that magnetic effect could strengthen the intermolecular hydrogen bonding of water molecules and favor formation of smaller water clusters. The findings of this study could contribute to potential applications in aquaculture, water quality control and treatment of cancer attributed to free radical induced-oxidative stress.


Author(s):  
Paolo Sammarco ◽  
Leopoldo Franco ◽  
Giorgio Bellotti ◽  
Claudia Cecioni ◽  
Stefano DeFinis

An innovative caisson breakwater geometry (patent pending) named "ARPEC" (Anti Reflective PErmeable Caisson) includes openings at all external and internal walls and at lateral (cross) ones, yet in a staggered pattern, to provide a labyrinthian hydraulic communication between the open sea and the internal waters. The complex sinuous water-flow within the consecutive permeable chambers thus favors wave energy dissipation as well as port water flushing and quality, with very low reflection and transmission coefficients. 2D lab model tests demonstrate the system effectiveness.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/PaUsinYO-Zo


2021 ◽  
Author(s):  
Augustine Chung Wei Yap ◽  
Hwang Sheng Lee ◽  
Joo Ling Loo ◽  
Nuruol Syuhadaa Mohd

Abstract pH, oxidation-reduction potential (ORP) and dissolved oxygen (DO) concentration are important parameters in water quality surveillance and treatment. The changes of these parameters are associated with electron density in water. Several techniques including electrolysis and catalysis which require redox reactions and electron exchange are employed to improve these parameters. In recent years, studies reported that magnetic effects can impart considerable changes on the pH, ORP and DO concentration of water. However, the correlation between electron density and magnetic effects on these parameters has yet to be disclosed despite the fact that increased electron density in water could improve water’s reductive properties, heat capacity and hydrogen bonding characteristics. In this study, the magnetic effects on pH, ORP and DO concentration were investigated using different magnets arrangements and water flow rates based on reversed electric motor principle. Results showed that the improvement of pH, ORP and DO concentration from 5.40–5.42 to 5.58–5.62 (+ 3.5%), 392 to 365 mV (-6.9%), and 7.30 to 7.71 mg L− 1 (+ 5.6%), respectively were achieved using combined variables of non-reversed polarity magnet arrangement (1000–1500 G magnetic strength) and water flow rate of 0.1–0.5 mL s− 1. Such decrement in ORP value also corresponded to 8.0 × 1013 number of electron generation in water. Furthermore, Raman analysis revealed that magnetic effect could strengthen the intermolecular hydrogen bonding of water molecules and favor formation of smaller water clusters. The findings of this study could contribute to potential applications in aquaculture, water quality control and treatment of cancer attributed to free radical induced-oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document