electron generation
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 82)

H-INDEX

37
(FIVE YEARS 6)

2021 ◽  
Vol 0 (4) ◽  
pp. 22-29
Author(s):  
G.L. SHARIPOV ◽  
◽  
B.M. GAREEV ◽  
A.M. ABDRAKHMANOV ◽  
L.R. YAKSHEMBETOVA ◽  
...  

Discovered the activation of moving single-bubble sonoluminescence and radioluminescence for Gd3+ and Dy3+ ions in aqueous solutions of GdCl3 and DyCl3 by the acceptor of a hydrated electron (eaq-): H+, Cd2+, etc. This activation is similar to the previously found activation by acceptors of eaq- radioluminescence and single-bubble sonoluminescence for the Tb3+ ion. Electron acceptors do not affect the quantum yield of the said lantha-nide ions photoluminescence. They also do not affect the yield of their multibubble sonoluminescence in aqueous solutions, since eaqdoes not appear in significant amounts during multibubble sonolysis. The found luminescence activation effects of lanthanide ions are interpreted as a consequence of the suppression of the quenching (reduction) reactions of these electronically excited ions eaq: *Ln3+ + eaq- → Ln2+ by acceptors. The feasibility of these reactions was predicted for all Ln3+ ions based on a theoretical estimate of their free energy. The discovery of the described effects of activation of the luminescence of Ln3+ ions is a consequence and serves as confirmation of not only the known generation of eaq- during radiolysis, but also its previously unknown generation during moving single-bubble sonolysis of water.


Author(s):  
Junqi Zhang ◽  
Zheng Chen ◽  
Changjiang Liu ◽  
Jianxun Li ◽  
Xingjuan An ◽  
...  

Background: Microbial fuel cells (MFCs) are a novel bioelectrochemical devices that can use exoelectrogens as biocatalyst to convert various organic wastes into electricity. Among them, acetate, a major component of industrial biological wastewater and by-product of lignocellulose degradation, could release eight electrons per mole when completely degraded into CO2 and H2O, which has been identified as a promising carbon source and electron donor. However, Shewanella oneidensis MR-1, a famous facultative anaerobic exoelectrogens, only preferentially uses lactate as carbon source and electron donor and could hardly metabolize acetate in MFCs, which greatly limited Coulombic efficiency of MFCs and the capacity of bio-catalysis.Results: Here, to enable acetate as the sole carbon source and electron donor for electricity production in S. oneidensis, we successfully constructed three engineered S. oneidensis (named AceU1, AceU2, and AceU3) by assembling the succinyl-CoA:acetate CoA-transferase (SCACT) metabolism pathways, including acetate coenzyme A transferase encoded by ato1 and ato2 gene from G. sulfurreducens and citrate synthase encoded by the gltA gene from S. oneidensis, which could successfully utilize acetate as carbon source under anaerobic and aerobic conditions. Then, biochemical characterizations showed the engineered strain AceU3 generated a maximum power density of 8.3 ± 1.2 mW/m2 with acetate as the sole electron donor in MFCs. In addition, when further using lactate as the electron donor, the maximum power density obtained by AceU3 was 51.1 ± 3.1 mW/m2, which approximately 2.4-fold higher than that of wild type (WT). Besides, the Coulombic efficiency of AceU3 strain could reach 12.4% increased by 2.0-fold compared that of WT, which demonstrated that the engineered strain AceU3 can further utilize acetate as an electron donor to continuously generate electricity.Conclusion: In the present study, we first rationally designed S. oneidensis for enhancing the electron generation by using acetate as sole carbon source and electron donor. Based on synthetic biology strategies, modular assembly of acetate metabolic pathways could be further extended to other exoelectrogens to improve the Coulombic efficiency and broaden the spectrum of available carbon sources in MFCs for bioelectricity production.


Author(s):  
Yasuyuki Nagashima ◽  
Koji Michishio ◽  
Luca Chiari ◽  
Yugo Nagata

Abstract Positronium is a bound state of one electron and one positron. It can be seen as the lightest neutral “atom”. It can also be seen as a neutralized electron or a neutralized positron. Since positronium is electrically neutral, special techniques are required to generate a variable energy beam of positronium. In recent years, it has become possible to efficiently generate positronium negative ions in which another electron is bound to positronium. It is possible to generate an energy-tunable positronium beam by accelerating positronium negative ions with an electric field and irradiating them with laser light to photodetach one electron. Generation of such a positronium beam has actually been realized, and applied research has begun. Here, we describe the energy-variable positronium beam generation, its applied research including the observation of the motion-induced resonance of positronium and the first measurement of the binding energy of positronium to one electron.


2021 ◽  
Vol 22 (22) ◽  
pp. 12235
Author(s):  
Hwa-Young Yang ◽  
Ana Chuquer ◽  
Seung-Hee Han ◽  
Gangasagar Sharma Gaudel ◽  
Xuan-Hung Pham ◽  
...  

The energy conversion efficiency (ECE) (η), current density (Jsc), open-circuit voltage (Voc), and fill factor (ff) of perovskite solar cells were studied by using the transmittance of a nanopatterned mesoporous TiO2 (mp-TiO2) thin-film layer. To improve the ECE of perovskite solar cells, a mp-TiO2 thin-film layer was prepared to be used as an electron transport layer (ETL) via the nanoimprinting method for nanopatterning, which was controlled by the aspect ratio. The nanopatterned mp-TiO2 thin-film layer had a uniform and well-designed structure, and the diameter of nanopatterning was 280 nm. The aspect ratio was controlled at the depths of 75, 97, 127, and 167 nm, and the perovskite solar cell was fabricated with different depths. The ECE of the perovskite solar cells with the nanopatterned mp-TiO2 thin-film layer was 14.50%, 15.30%, 15.83%, or 14.24%, which is higher than that of a non-nanopatterned mp-TiO2 thin-film layer (14.07%). The enhancement of ECE was attributed to the transmittance of the nanopatterned mp-TiO2 thin-film layer that is due to the improvement of the electron generation. As a result, better electron generation affected the electron density, and Jsc increased the Voc, and ff of perovskite solar cells.


2021 ◽  
pp. 162214
Author(s):  
Xi Wang ◽  
Kaili Yao ◽  
Lihua Liu ◽  
Changxu Liu ◽  
Hongyan Liang

Chemosphere ◽  
2021 ◽  
pp. 132292
Author(s):  
Xiaoping Yu ◽  
Ling Tan ◽  
Yalin Yu ◽  
Yun Xia ◽  
Zhen Guan ◽  
...  

2021 ◽  
Author(s):  
Zaizhu Lou ◽  
Changhai Lu ◽  
Xinru Li ◽  
Juan Li ◽  
Liang Mao ◽  
...  

Abstract Constructing multi-physical effects on semiconductors is one new horizon to develop next-generation photocatalysts. Here we use pyroelectric black phosphorus (BP) to couple with nonmetallic plasmonic tungsten oxides (WO) forming a BP/WO heterostructures as photocatalysts to convert CO2 for CO under visible-near-infrared (Vis-NIR) light irradiation. Nonmetallic plasmonic heterostructures exhibit 26.1 µmol h− 1 g− 1 CO generation with a selectivity of 98 %, and which is 7- and 17-fold higher than those of plasmonic WO and pyroelectric BP, respectively. The interface P-O-W bonds in heterostructures are constructed to work as channels for electron transfer from BP to plasmonic WO. Moreover, the photothermal energy generated by SPR excitation on WO can make the temperature of heterostructures rapidly increasing from 24 to 86 oC in 10 min, triggering the pyroelectric BP for carriers to promote electron transfer. Multi-physical effects including plasmonic hot carriers and photothermal effect of WO, intrinsic band excitation and pyroelectric effect of BP and W-O-P bonds play synergistic roles on boosting hot electron generation for CO2 reduction. This work provides clear proofs to demonstrate that constructing multi-physical effects on semiconductors is one useful strategy to promote NIR-harvesting for artificial photosynthesis.


2021 ◽  
Author(s):  
Dominic Bosomtwi ◽  
Marek Osinski ◽  
Viktoriia Babicheva

Sign in / Sign up

Export Citation Format

Share Document