scholarly journals Turbulence characteristics in skimming flows on stepped spillways

2008 ◽  
Vol 35 (9) ◽  
pp. 865-880 ◽  
Author(s):  
G. Carosi ◽  
H. Chanson

The stepped spillway design is characterized by an increase in the rate of energy dissipation on the chute associated with a reduction of the size of the downstream energy dissipation system. This study presents a thorough investigation of the air–water flow properties in skimming flows with a focus on the turbulent characteristics. New measurements were conducted in a large-size facility (θ = 22°; step height, h = 0.1 m) with several phase-detection intrusive probes. Correlation analyses were applied to estimate the integral turbulent length and time scales. The skimming flow properties presented some basic characteristics that were qualitatively and quantitatively in agreement with previous air–water flow measurements in skimming flows. Present measurements showed some relatively good correlation between turbulence intensities T u and turbulent length and time scales. These measurements also illustrated large turbulence levels and large turbulent time and length scales in the intermediate region between the spray and bubbly flow regions.

2013 ◽  
Vol 40 (4) ◽  
pp. 361-372 ◽  
Author(s):  
S. Felder ◽  
H. Chanson

Air–water flows on stepped spillways were investigated experimentally in the last decades with a focus on steep slope chutes equipped with flat horizontal steps. Detailed air–water flow properties were recorded herein with three stepped geometries down a slope of θ = 8.9° with: flat horizontal steps, pooled steps, and a combination of flat and pooled steps. The data included the distributions of basic air–water flow properties, as well as the energy dissipation and flow resistance data deduced from the air–water flow measurements. The results on the flat slope showed that the pooled stepped design enabled a greater rate of energy dissipation, but the pooled stepped geometries were affected by some flow instabilities and unsteady flow processes for a range of flow rates.


2020 ◽  
Vol 20 (4) ◽  
pp. 1546-1553
Author(s):  
Yu Zhou ◽  
Jianhua Wu ◽  
Fei Ma ◽  
Jianyong Hu

Abstract In skimming flow, a uniform flow can be achieved and the flow depth, velocity and air concentration remain constant if a stepped spillway is sufficiently long. In this study, physical model experiments were performed to investigate the uniform characteristics and energy dissipation of a hydraulic-jump-stepped spillway, which is a new type of stepped spillway for increasing the unit discharge capacity and energy dissipation. Based on the redefinition of uniform flow, experimental results show that at a given stepped spillway slope, a smaller height for the beginning of the uniform flow region, a greater uniform aerated flow depth and a greater uniform equivalent clear water flow depth can be obtained as compared with the traditional stepped spillway due to strong aeration in the aeration basin. Under the condition of uniform flow, the energy dissipation rate of stepped spillways can be estimated by the equivalent clear water flow depth with given inflow conditions. Compared with the traditional stepped spillway, the uniform flow over the hydraulic-jump-stepped spillway has a smaller specific energy, revealing that the hydraulic-jump-stepped spillway is more advantageous for dissipating energy, especially at large unit discharges.


2002 ◽  
Vol 29 (1) ◽  
pp. 145-156 ◽  
Author(s):  
H Chanson ◽  
L Toombes

Stepped spillways have been used for about 3500 years. The last few decades have seen the development of new construction materials, design techniques, and applications, for example, embankment overtopping protection systems. Although it is commonly acknowledged that free-surface aeration is significant in stepped chutes, experimental data are scarce, often limited to very steep slopes (α ~ 50°). This paper presents an experimental study conducted in a large-size stepped chute (α = 22°, h = 0.1 m, W = 1 m). Observations demonstrate the existence of a transition flow pattern for intermediate flow rates between nappe and skimming flows. Detailed air–water flow measurements were conducted in both transition and skimming flows, immediately downstream of the inception point of free-surface aeration where uniform equilibrium flow conditions were not achieved. In skimming flows, a complete characterization is developed for the distributions of void fraction, bubble count rate, and velocity, and flow resistance data are compared with other studies. Transition flows exhibit significantly different air–water flow properties. They are highly aerated, requiring the design of comparatively high chute sidewalls.Key words: stepped spillway, air entrainment, two-phase flow properties, skimming flow, transition flow.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammad Alkhamis ◽  
◽  
Saeed Reza Sabbagh-Yazdi ◽  
Mohsen Ranjbar-Malekshah ◽  
◽  
...  

A morning glory spillway usually has an ogee shaped crest and conveys spill water flow to its downstream vertical shaft followed by a horizontal tunnel. The ungated morning glory spillways should convey variable discharges, which nonlinearly depends on the reservoir water elevation. The variation of discharge for unit length of the crest may cause challenges on design of downstream crest curve (which affects coefficient of discharge and downstream crest negative pressure). Furthermore, formation of a horizontal vortex flow affects the spillway discharge. In this paper, in order to resolve these problems by energy dissipation and water flow aeration, variable size steps are mapped to downstream of the curved ogee crest of morning glory spillway. A finite volume base numerical flow solver is used to investigate the effects of the considered configurations on the hydraulic design parameters. In this work, having verified the pressure and aeration of the flow over an ordinary stepped spillway, the characteristics of flow over geometry of an ordinary morning glory spillway, as well as stepped spillway, are modelled and compared to the available measurements on laboratory hydraulic models. Finally, an existing ordinary morning glory spillway is computationally modelled by considering an alternative design of variable sized steps at downstream crest (by mapping their edges to the ordinary profile of the morning glory spillway). The stepped morning glory spillway alternatives are numerically simulated for various flow rates, and the computed discharge coefficients and energy dissipations are compared with simulation results for ordinary morning glory spillway of the case.


Author(s):  
Farzin Salmasi ◽  
John Abraham

Abstract Stepped spillways are important water-management structures that are used for energy dissipation. Use of these spillways has increased in recent decades, they can reduce construction time and they are effective for reducing the flow's downstream kinetic energy. In this study, the width and height of the steps as well as the slope and height of the overflow spillway were considered as variables. Due to the large number of variables, non-linearity of the objective function and constraints, and the lack of an explicit relationship between decision variables, a genetic algorithm (GA) was used. A stepped spillway with optimal dimensions was proposed as a replacement of the smooth spillway of Sarogh Dam located in West Azerbaijan province, Iran. The proposed steps increase energy dissipation; for constant discharge and varying slopes, the changes in the optimal height of the steps were insignificant. Sensitivity analysis using the objective function showed that the relative energy dissipation for a constant discharge is independent of the optimal height of the steps and decreases with increasing spillway slope. In addition, for fixed slopes, increasing the flow rate leads to a decrease in relative energy dissipation and an increase in the optimal height of the steps.


2019 ◽  
Vol 9 (23) ◽  
pp. 5071
Author(s):  
Abdelwanees Ashoor ◽  
Amin Riazi

A stepped spillway, which is defined as a spillway with steps on the chute, can be used to improve the energy dissipation of descending water. Although uniform stepped spillways have been studied comprehensively, non-uniform stepped spillways need more attention. In the interest of maximum energy dissipation, in this study, non-uniform stepped spillways were investigated numerically. To this end, within the range of skimming flow, four different types of non-uniform step lengths, including convex, concave, random, and semi-uniform configurations, were tested in InterFOAM. To evaluate the influence of non-uniform step lengths on energy dissipation, the height and number of steps in all models were fixed and equal to a constant number. The results indicated that in semi-uniform stepped spillways, when the ratio between the lengths of the successive steps is 1:3, a vortex interference region occurs within the two adjacent cavities of the entire stepped chute, and as a result, the energy dissipation increases by up to 20%.


Author(s):  
Laura Montano ◽  
Stefan Felder

Abstract Novel air-water flow measurements were conducted in fully aerated hydraulic jumps with partially and fully developed supercritical inflow conditions. Irrespective of the inflow conditions, the hydraulic jumps resembled typical flow patterns with strong aeration and instabilities, albeit hydraulic jumps with fully developed inflow conditions had a more upwards directed roller motion and a larger clear water core in the second half of the roller. Hydraulic jumps with fully developed inflow conditions had comparatively larger void fractions in the first half of the jump roller and larger bubble count rates throughout, while a comparatively larger number of smaller bubble sizes suggested a stronger break-up of bubbles. This was consistent with slightly larger interfacial velocities and turbulence intensities in the first half of the jump roller with fully developed inflow conditions. An assessment of the required sampling duration for air-water flow properties indicated the requirement to sample for at least five times longer duration than applied in previous studies. These results highlighted the need to carefully consider the inflow conditions and sampling parameters for aerated hydraulic jumps.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1478 ◽  
Author(s):  
Shicheng Li ◽  
Jianmin Zhang

Pooled stepped spillway is known for high aeration efficiency and energy dissipation, but the understanding for the effects of pool weir configuration on the flow properties and energy loss is relatively limited, so RNG k − ε εturbulence model with VOF method was employed to simulate the hydraulic characteristics of the stepped spillways with four types of pool weirs. The calculated results suggested the flow in the stepped spillway with staggered configuration of` two-sided pooled and central pooled steps (TP-CP) was highly three dimensional and created more flow instabilities and vortex structures, leading to 1.5 times higher energy dissipation rate than the fully pooled configuration (FP-FP). In FP-FP configuration, the stepped spillway with fully pooled and two-sided pooled steps (FP-TP) and the spillway with fully pooled and central pooled steps (FP-CP), the pressure on the horizontal step surfaces presented U-shaped variation, and TP-CP showed the greatest pressure fluctuation. For FP-TP and FP-CP, the vortex development in the transverse direction presented the opposite phenomenon, and the maximum vortex intensity in TP-CP occurred at Z/W = 0.25, while FP-FP illustrated no significant change in the transverse direction. The overlaying flow velocity distribution in the spanwise direction demonstrated no obvious difference among FP-FP, FP-TP, and FP-CP, while the velocity in TP-CP increased from the axial plane to the sidewalls, but the maximum velocity for all cases were approximately the same.


2014 ◽  
Vol 3 (4) ◽  
pp. 501
Author(s):  
Ali Heidari ◽  
Poria Ghasemi

Stepped spillways are kind of dissipative structures used in rivers with steep slopes to reduce the flow energy and also the scouring potential of water. This dissipation is caused through diffusion along the spillway. The reduction of energy also leads to optimize the still basin geometry and performance downstream, and thus make the project more economic. In this paper, the hydraulic behaviour of stepped spillway is investigated based on kinetic energy. The results show that the average mean kinetic energy decreases upon an appraise in stepss slope. Finally, horizontal steps are proposed. Keywords: Stepped Spillway, Mean Kinetic Energy, Dissipation, and Stepss Slope.


Sign in / Sign up

Export Citation Format

Share Document