scholarly journals Uniform persistence and periodic solutions for a discrete predator–prey system with delays

2006 ◽  
Vol 316 (1) ◽  
pp. 161-177 ◽  
Author(s):  
Xitao Yang
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Kankan Sarkar ◽  
Subhas Khajanchi ◽  
Prakash Chandra Mali ◽  
Juan J. Nieto

In this study, we investigate a mathematical model that describes the interactive dynamics of a predator-prey system with different kinds of response function. The positivity, boundedness, and uniform persistence of the system are established. We investigate the biologically feasible singular points and their stability analysis. We perform a comparative study by considering different kinds of functional responses, which suggest that the dynamical behavior of the system remains unaltered, but the position of the bifurcation points altered. Our model system undergoes Hopf bifurcation with respect to the growth rate of the prey population, which indicates that a periodic solution occurs around a fixed point. Also, we observed that our predator-prey system experiences transcritical bifurcation for the prey population growth rate. By using normal form theory and center manifold theorem, we investigate the direction and stability of Hopf bifurcation. The biological implications of the analytical and numerical findings are also discussed in this study.


2020 ◽  
Vol 30 (02) ◽  
pp. 2050022 ◽  
Author(s):  
Huanhuan Qiu ◽  
Shangjiang Guo ◽  
Shangzhi Li

In this paper, we consider a generalized predator–prey system with prey-taxis under Neumann boundary condition, that is, the predators can survive even in the absence of the prey species. It is proved that for an arbitrary spatial dimension, the corresponding initial boundary value problem possesses a unique global bounded classical solution when the prey-taxis is restricted to a small range. Moreover, the local stabilities of constant steady states (including trivial, semi-trivial and positive constant steady states) are investigated. A further study on the coexistence steady state implies that the prey-taxis term suppresses the global asymptotical stability and influences the steady-state/Hopf bifurcations (if they exist). Analyses of steady-state bifurcation, Hopf bifurcation, and even Hopf/steady-state mode interaction are carried out in detail by means of the Lyapunov–Schmidt procedure. In particular, we obtain stable or unstable steady states, time-periodic solutions, quasi-periodic solutions, and sphere-like surfaces of solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found in numerical simulations.


2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Yongzhi Liao ◽  
Yongkun Li ◽  
Xiaoyan Dou

By applying Mawhin’s continuation theorem of coincidence degree theory, we study the existence of multiple positive periodic solutions for a Gilpin-Ayala competition predator-prey system with harvesting terms and obtain some sufficient conditions for the existence of multiple positive periodic solutions for the system under consideration. The result of this paper is completely new. An example is employed to illustrate our result.


Sign in / Sign up

Export Citation Format

Share Document