SHARP CONSTANTS BETWEEN EQUIVALENT NORMS IN WEIGHTED LORENTZ SPACES

2010 ◽  
Vol 88 (1) ◽  
pp. 19-27 ◽  
Author(s):  
SORINA BARZA ◽  
JAVIER SORIA

AbstractFor an increasing weight w in Bp (or equivalently in Ap), we find the best constants for the inequalities relating the standard norm in the weighted Lorentz space Λp(w) and the dual norm.

1998 ◽  
Vol 5 (2) ◽  
pp. 177-200
Author(s):  
Y. Rakotondratsimba

Abstract Conditions on weights 𝑢(·), υ(·) are given so that a classical operator T sends the weighted Lorentz space Lrs (υd𝑥) into Lpq (υd𝑥). Here T is either a fractional maximal operator Mα or a fractional integral operator Iα or a Calderón–Zygmund operator. A characterization of this boundedness is obtained for Mα and Iα when the weights have some usual properties and max(r, s) ≤ min(p, q).


2012 ◽  
Vol 2012 ◽  
pp. 1-19
Author(s):  
S. Barza ◽  
A. N. Marcoci ◽  
L. E. Persson

We find the best constants in inequalities relating the standard norm, the dual norm, and the norm∥x∥(p,s):=inf⁡{∑k∥x(k)∥p,s}, where the infimum is taken over all finite representationsx=∑kx(k)in the classical Lorentz sequence spaces. A crucial point in this analysis is the concept of level sequence, which we introduce and discuss. As an application, we derive the best constant in the triangle inequality for such spaces.


2011 ◽  
Vol 59 (2) ◽  
pp. 165-174
Author(s):  
Ha Huy Bang ◽  
Nguyen Van Hoang ◽  
Vu Nhat Huy

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Eddy Kwessi ◽  
Geraldo de Souza ◽  
Fidele Ngwane ◽  
Asheber Abebe

We obtain an atomic decomposition of weighted Lorentz spaces for a class of weights satisfying the Δ2condition. Consequently, we study operators such as the multiplication and composition operators and also provide Hölder’s-type and duality-Riesz type inequalities on these weighted Lorentz spaces.


2018 ◽  
Vol 30 (4) ◽  
pp. 997-1011 ◽  
Author(s):  
Hongliang Li ◽  
Qinxiu Sun ◽  
Xiao Yu

Abstract Given measurable functions ϕ, ψ on {\mathbb{R}^{+}} and a kernel function {k(x,y)\geq 0} satisfying the Oinarov condition, we study the Hardy operator Kf(x)=\psi(x)\int_{0}^{x}k(x,y)\phi(y)f(y)\,dy,\quad x>0, between Orlicz–Lorentz spaces {\Lambda_{X}^{G}(w)} , where f is a measurable function on {\mathbb{R}^{+}} . We obtain sufficient conditions of boundedness of {K:\Lambda_{u_{0}}^{G_{0}}(w_{0})\rightarrow\Lambda_{u_{1}}^{G_{1}}(w_{1})} and {K:\Lambda_{u_{0}}^{G_{0}}(w_{0})\rightarrow\Lambda_{u_{1}}^{G_{1},\infty}(w_{% 1})} . We also look into boundedness and compactness of {K:\Lambda_{u_{0}}^{p_{0}}(w_{0})\rightarrow\Lambda_{u_{1}}^{p_{1},q_{1}}(w_{1% })} between weighted Lorentz spaces. The function spaces considered here are quasi-Banach spaces rather than Banach spaces. Specializing the weights and the Orlicz functions, we restore the existing results as well as we achieve new results in the new and old settings.


2018 ◽  
Vol 20 (03) ◽  
pp. 1750029 ◽  
Author(s):  
Daniel Pellegrino ◽  
Eduardo V. Teixeira

We investigate the optimality problem associated with the best constants in a class of Bohnenblust–Hille-type inequalities for [Formula: see text]-linear forms. While germinal estimates indicated an exponential growth, in this work we provide strong evidences to the conjecture that the sharp constants in the classical Bohnenblust–Hille inequality are universally bounded, irrespectively of the value of [Formula: see text]; hereafter referred as the Universality Conjecture. In our approach, we introduce the notions of entropy and complexity, designed to measure, to some extent, the complexity of such optimization problems. We show that the notion of entropy is critically connected to the Universality Conjecture; for instance, that if the entropy grows at most exponentially with respect to [Formula: see text], then the optimal constants of the [Formula: see text]-linear Bohnenblust–Hille inequality for real scalars are indeed bounded universally with respect to [Formula: see text]. It is likely that indeed the entropy grows as [Formula: see text], and in this scenario, we show that the optimal constants are precisely [Formula: see text]. In the bilinear case, [Formula: see text], we show that any extremum of the Littlewood’s [Formula: see text] inequality has entropy [Formula: see text] and complexity [Formula: see text], and thus we are able to classify all extrema of the problem. We also prove that, for any mixed [Formula: see text]-Littlewood inequality, the entropy do grow exponentially and the sharp constants for such a class of inequalities are precisely [Formula: see text]. In addition to the notions of entropy and complexity, the approach we develop in this work makes decisive use of a family of strongly non-symmetric [Formula: see text]-linear forms, which has further consequences to the theory, as we explain herein.


Sign in / Sign up

Export Citation Format

Share Document