scholarly journals Inverse scattering for impedance Schrödinger operators, I. Step-like impedance lattice

2018 ◽  
Vol 458 (1) ◽  
pp. 71-92 ◽  
Author(s):  
S. Albeverio ◽  
R. Hryniv ◽  
Ya. Mykytyuk
Author(s):  
Sergio Albeverio ◽  
Rostyslav O. Hryniv ◽  
Yaroslav V. Mykytyuk ◽  
Peter A. Perry

2018 ◽  
Vol 19 (11) ◽  
pp. 3397-3455 ◽  
Author(s):  
Kazunori Ando ◽  
Hiroshi Isozaki ◽  
Hisashi Morioka

2019 ◽  
Vol 27 (4) ◽  
pp. 253-259
Author(s):  
Hayk Asatryan ◽  
Werner Kirsch

Abstract We consider one-dimensional random Schrödinger operators with a background potential, arising in the inverse scattering problem. We study the influence of the background potential on the essential spectrum of the random Schrödinger operator and obtain Anderson localization for a larger class of one-dimensional Schrödinger operators. Further, we prove the existence of the integrated density of states and give a formula for it.


Sign in / Sign up

Export Citation Format

Share Document