inverse scattering transform
Recently Published Documents


TOTAL DOCUMENTS

264
(FIVE YEARS 31)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
A. S. Fokas ◽  
J. Lenells

We propose a new approach for the solution of initial value problems for integrable evolution equations in the periodic setting based on the unified transform. Using the nonlinear Schrödinger equation as a model example, we show that the solution of the initial value problem on the circle can be expressed in terms of the solution of a Riemann–Hilbert problem whose formulation involves quantities which are defined in terms of the initial data alone. Our approach provides an effective solution of the problem on the circle which is conceptually analogous to the solution of the problem on the line via the inverse scattering transform.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuan Li ◽  
Shou-Fu Tian

<p style='text-indent:20px;'>In this work, we study the inverse scattering transform of a nonlocal Hirota equation in detail, and obtain the corresponding soliton solutions formula. Starting from the Lax pair of this equation, we obtain the corresponding infinite number of conservation laws and some properties of scattering data. By analyzing the direct scattering problem, we get a critical symmetric relation which is different from the local equations. A novel left-right Riemann-Hilbert problem is proposed to develop the inverse scattering theory. The potentials are recovered and the pure soliton solutions formula is obtained when the reflection coefficients are zero. Based on the zero types of scattering data, nine types of soliton solutions are obtained and three typical types are described in detail. In addition, some dynamic behaviors are given to illustrate the soliton characteristics of the space symmetric nonlocal Hirota equation.</p>


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 10
Author(s):  
Nikolay K. Vitanov ◽  
Zlatinka I. Dimitrova ◽  
Kaloyan N. Vitanov

The goal of this article is to discuss the Simple Equations Method (SEsM) for obtaining exact solutions of nonlinear partial differential equations and to show that several well-known methods for obtaining exact solutions of such equations are connected to SEsM. In more detail, we show that the Hirota method is connected to a particular case of SEsM for a specific form of the function from Step 2 of SEsM and for simple equations of the kinds of differential equations for exponential functions. We illustrate this particular case of SEsM by obtaining the three- soliton solution of the Korteweg-de Vries equation, two-soliton solution of the nonlinear Schrödinger equation, and the soliton solution of the Ishimori equation for the spin dynamics of ferromagnetic materials. Then we show that a particular case of SEsM can be used in order to reproduce the methodology of the inverse scattering transform method for the case of the Burgers equation and Korteweg-de Vries equation. This particular case is connected to use of a specific case of Step 2 of SEsM. This step is connected to: (i) representation of the solution of the solved nonlinear partial differential equation as expansion as power series containing powers of a “small” parameter ϵ; (ii) solving the differential equations arising from this representation by means of Fourier series, and (iii) transition from the obtained solution for small values of ϵ to solution for arbitrary finite values of ϵ. Finally, we show that the much-used homogeneous balance method, extended homogeneous balance method, auxiliary equation method, Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method and first integral method are connected to particular cases of SEsM.


Sign in / Sign up

Export Citation Format

Share Document