Transitive abelian nonautonomous dynamical systems

2021 ◽  
Vol 499 (2) ◽  
pp. 125023
Author(s):  
Khadija Ben Rejeb
2020 ◽  
Vol 7 (1) ◽  
pp. 163-175
Author(s):  
Mehdi Pourbarat

AbstractWe study the theory of universality for the nonautonomous dynamical systems from topological point of view related to hypercyclicity. The conditions are provided in a way that Birkhoff transitivity theorem can be extended. In the context of generalized linear nonautonomous systems, we show that either one of the topological transitivity or hypercyclicity give sensitive dependence on initial conditions. Meanwhile, some examples are presented for topological transitivity, hypercyclicity and topological conjugacy.


2017 ◽  
Vol 22 (11) ◽  
pp. 0-0
Author(s):  
Everaldo de Mello Bonotto ◽  
◽  
Matheus Cheque Bortolan ◽  
Rodolfo Collegari ◽  
José Manuel Uzal ◽  
...  

2015 ◽  
Vol 25 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Tian Ma ◽  
Erik M. Bollt

We introduce a definition of finite-time curvature evolution along with our recent study on shape coherence in nonautonomous dynamical systems. Comparing to slow evolving curvature preserving the shape, large curvature growth points reveal the dramatic change on shape such as the folding behaviors in a system. Closed trough curves of low finite-time curvature (FTC) evolution field indicate the existence of shape coherent sets, and troughs in the field indicate the most significant shape coherence. Here, we will demonstrate these properties of the FTC, as well as contrast to the popular Finite-Time Lyapunov Exponent (FTLE) computation, often used to indicate hyperbolic material curves as Lagrangian Coherent Structures (LCS). We show that often the FTC troughs are in close proximity to the FTLE ridges, but in other scenarios, the FTC indicates entirely different regions.


Sign in / Sign up

Export Citation Format

Share Document