Tingley's problems on uniform algebras

Author(s):  
Osamu Hatori ◽  
Shiho Oi ◽  
Rumi Shindo Togashi
Keyword(s):  
Author(s):  
SHIHO OI

Abstract Li et al. [‘Weak 2-local isometries on uniform algebras and Lipschitz algebras’, Publ. Mat.63 (2019), 241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant: let A be a unital complex Banach algebra and let $\Delta : A \to \mathbb {C}$ be a mapping satisfying the following properties: (a) $\Delta $ is 1-homogeneous (that is, $\Delta (\lambda x)=\lambda \Delta (x)$ for all $x \in A$ , $\lambda \in \mathbb C$ ); (b) $\Delta (x)-\Delta (y) \in \mathbb {T}\sigma (x-y), \quad x,y \in A$ . Then $\Delta $ is linear and there exists $\lambda _{0} \in \mathbb {T}$ such that $\lambda _{0}\Delta $ is multiplicative. In this note we prove that if (a) is relaxed to $\Delta (0)=0$ , then $\Delta $ is complex-linear or conjugate-linear and $\overline {\Delta (\mathbf {1})}\Delta $ is multiplicative. We extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local map in the set of all surjective isometries (without assuming linearity) on a certain function space is in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed by Molnár [‘On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl.479(1) (2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.


1994 ◽  
Vol 05 (02) ◽  
pp. 201-212 ◽  
Author(s):  
HERBERT KAMOWITZ ◽  
STEPHEN SCHEINBERG

Many commutative semisimple Banach algebras B including B = C (X), X compact, and B = L1 (G), G locally compact, have the property that every homomorphism from B into C1[0, 1] is compact. In this paper we consider this property for uniform algebras. Several examples of homomorphisms from somewhat complicated algebras of analytic functions to C1[0, 1] are shown to be compact. This, together with the fact that every homomorphism from the disc algebra and from the algebra H∞ (∆), ∆ = unit disc, to C1[0, 1] is compact, led to the conjecture that perhaps every homomorphism from a uniform algebra into C1[0, 1] is compact. The main result to which we devote the second half of this paper, is to construct a compact Hausdorff space X, a uniformly closed subalgebra [Formula: see text] of C (X), and an arc ϕ: [0, 1] → X such that the transformation T defined by Tf = f ◦ ϕ is a (bounded) homomorphism of [Formula: see text] into C1[0, 1] which is not compact.


1979 ◽  
Vol 55 (4) ◽  
pp. 128-131
Author(s):  
Yoshiki Ohno ◽  
Kôzô Yabuta
Keyword(s):  

2004 ◽  
Vol 162 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Mati Abel ◽  
Krzysztof Jarosz
Keyword(s):  

1990 ◽  
Vol 55 (5) ◽  
pp. 475-483
Author(s):  
Takahiko Nakazi ◽  
Takanori Yamamoto

1981 ◽  
Vol 33 (1) ◽  
pp. 181-200 ◽  
Author(s):  
S. H. Kulkarni ◽  
B. V. Limaye

Although the theory of complex Banach algebras is by now classical, the first systematic exposition of the theory of real Banach algebras was given by Ingelstam [5] as late as 1965. More recently, further attention to real Banach algebras was paid in 1970 [1], where, among other things, the (real) standard algebras on finite open Klein surfaces were introduced. Generalizing these considerations, real uniform algebras were studied in [7] and [6].In the present paper, an attempt is made to develop the theory of real function algebras (see Section 1 for the definition) along the lines of the complex function algebras. Although the real function algebras are not structurally different from the real uniform algebras introduced in [7], they are easier to deal with since their elements are actually (complex-valued) functions.


Sign in / Sign up

Export Citation Format

Share Document