Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel

2018 ◽  
Vol 31 ◽  
pp. 640-649 ◽  
Author(s):  
Facai Ren ◽  
Fei Chen ◽  
Jun Chen ◽  
Xiaoying Tang
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ming-wei Guo ◽  
Zhen-hua Wang ◽  
Ze-an Zhou ◽  
Shu-hua Sun ◽  
Wan-tang Fu

316LN stainless steel with 0.08%N (08N) and 0.17%N (17N) was compressed at 1073–1473 K and 0.001–10 s−1. The hot deformation behavior was investigated using stress-strain curve analysis, processing maps, and so forth. The microstructure was analyzed through electron backscatter diffraction analysis. Under most conditions, the deformation resistance of 17N was higher than that of 08N. This difference became more pronounced at lower temperatures. The strain rate sensitivity increased with increasing temperature for types of steel. In addition, the higher the N content, the higher the strain rate sensitivity. Hot deformation activation energy increased from 487 kJ/mol to 549 kJ/mol as N concentration was increased from 0.08% to 0.17%. The critical strain for initiation of dynamic recrystallization was lowered with increasing N content. In the processing maps, both power dissipation ratio and unstable region increased with increasing N concentration. In terms of microstructure evolution, N promoted dynamic recrystallization kinetic and decreased dynamic recrystallization grain size. The grain growth rate was lower in 17N than in 08N during heat treatment. Finally, it was found that N favored twin boundary formation.


2011 ◽  
Vol 695 ◽  
pp. 361-364 ◽  
Author(s):  
Ying Han ◽  
Guan Jun Qiao ◽  
Dong Na Yan ◽  
De Ning Zou

The hot deformation behavior of super 13Cr martensitic stainless steel was investigated using artificial neural network (ANN). Hot compression tests were carried out at the temperature range of 950°C to 1200°C and strain rate range of 0.1–50s–1at an interval of an order of magnitude. Based on the limited experimental data, the ANN model for the constitutive relationship existed between flow stress and strain, strain rate and deformation temperature was developed by back-propagation (BP) neural network method. A three layer structured network with one hidden layer and ten hidden neurons was trained and the normalization method was employed in training for avoiding over fitting. Modeling results show that the developed ANN model can efficiently predict the flow stress of the steel and reflect the hot deformation behavior in the whole deforming process.


2014 ◽  
Vol 593 ◽  
pp. 111-119 ◽  
Author(s):  
Yu Cao ◽  
Hongshuang Di ◽  
R.D.K. Misra ◽  
Xiao Yi ◽  
Jiecen Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document