strain rate sensitivity
Recently Published Documents


TOTAL DOCUMENTS

922
(FIVE YEARS 186)

H-INDEX

61
(FIVE YEARS 10)

Author(s):  
Bo Pu ◽  
Ping Song ◽  
Wen-bin Li ◽  
Wen-jin Yao ◽  
Xiao-ming Wang

Abstract This paper presents a study on plastic deformation behavior of Cu–50Ta alloy at temperatures of 286–473 K and strain-rate of 0.01–6200 s−1. The effects of temperature, strain-rate, and strain on the yield strength, flow stress, and strain-rate sensitivity coefficient were determined. A phenomenological model was established to predict variation of the strain-rate sensitivity coefficient for Cu–50Ta alloy under dynamic compression. A Johnson–Cook constitutive model was established to predict the equivalent stress–equivalent plastic strain relationship under extreme deformation (high temperature and strain-rate). The results showed that the plastic deformation behavior of Cu–50Ta alloy was affected by temperature, strain-rate, and strain. The material exhibited obvious strain-rate strengthening and thermal softening. As the strain-rate increased, the yield strength logarithmically increased. At a temperature of 286 K, the strain-rate increased from 0.01 s−1 to 6200 s−1, and the yield strength increased from 543.75 MPa to 881.13 MPa. In addition, the yield strength linearly decreased as the deformation temperature increased. Under conditions of dynamic deformation, the variation of strain-rate sensitivity coefficient could be expressed as a function of strain-rate and strain. The phenomenological model accurately described the variation of the strain-rate sensitivity coefficient of Cu–50Ta under dynamic deformation conditions. The Johnson–Cook constitutive parameters, calibrated by experimental data, described the plastic deformation behavior of the alloy under high-velocity impact.


2021 ◽  
Author(s):  
Nicolas Jacques ◽  
Jose Rodriguez-Martinez

The present paper is devoted to the analysis of strain-rate history effects on neck formation under dynamic loading. For materials presenting strain-rate history effects, two different strain-rate sensitivities should be distinguished: the instantaneous strain-rate sensitivity and the work-hardening strain-rate sensitivity. We have analysed the relative contributions of these two kinds of strain-rate sensitivities to neck retardation for two different configurations: a bar under impact tension and a dynamically expanding ring. For this purpose, we have developed finite element models and, for the second configuration, an analytical model based on the linear stability analysis. The obtained results show that strain-rate history effects have a significant influence on the onset and development of necking. The reason of thisphenomenon is that, contrary to the instantaneous strain-rate sensitivity, the work-hardening strain-rate sensitivity does not contribute to delay the neck formation.


2021 ◽  
Author(s):  
Sagar Mahalingappa Baligidad ◽  
Chethan Kumar Gangadhara ◽  
Maharudresh Aralikatte Chandrashekhar

Abstract Nanofillers can be added to polymers to improve their mechanical behavior. However, the yield behaviour of most polymer composites is influenced by strain rate. The majority of the research focused on the behaviour of polymer composites at high strain rates. This work aims to investigate how hydroxyapatite (HAP) and reduced Graphene Oxide (rGO) nanofillers affect the mechanical properties of sulphonated polyetheretherketone (sPEEK) at low (tensile and compression behaviour) and high strain rates (compression behaviour). The thermal, mechanical, and energy absorption responses of sPEEK filled with HAP and varying mass fraction (Mf) of rGO (0.5%, 1%, and 1.5%) at different strain are studied in detail. The strong strain rate effect was seen in HAp and rGO loaded sPEEK composites. The strain rate sensitivity factor of sPEEK-HAP/rGO improved as the strain rate increased, but decreased when the Mf of rGO increased. Under low strain rate compression, HAp and rGO loaded sPEEK absorbed more energy at Mf about 4%. SEM micrography was used to study the microstructures of the fractured interfaces of the components, revealing that the HAp and sPEEK materials formed a good compatibility in presence of rGO.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1491
Author(s):  
Yujin Yang

Carbon fiber-reinforced plastic (CFRP) is a promising material to achieve lightweight automotive components. The effects of the strain rate and configurations of CFRP on dynamic tensile properties have not yet been fully explored; thus, its lightweight benefits cannot be maximized. In this paper, the dynamic tensile properties of CFRPs, tested using two different processes with two different resins and four different configurations, were studied with a strain rate from 0.001 to 500 s−1. The tensile strength, modulus, failure strain, and fracture mechanism were analyzed. It was found that the dynamic performance enhances the strength and modulus, whereas it decreases the failure strain. The two processes demonstrated the same level of tensile strength but via different fracture mechanisms. Fiber orientation also significantly affects the fracture mode of CFRP. Resins and configurations both have an influence on strain rate sensitivity. An analytic model was proposed to examine the strain rate sensitivity of CFRPs with different processes and configurations. The proposed model agreed well with the experimental data, and it can be used in simulations to maximize the lightweight properties of CFRP.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7104
Author(s):  
Shilun Yu ◽  
Yingchun Wan ◽  
Chuming Liu ◽  
Zhiyong Chen ◽  
Xiangyang Zhou

Nanocrystalline materials exhibit many unique physical and chemical properties with respect to their coarse-grained counterparts due to the high volume fraction of grain boundaries. Research interests on nanocrystalline materials around the world have been lasting over the past decades. In this study, we explored the room temperature strain rate sensitivity and creep behavior of the nanocrystalline Mg–Gd–Y–Zr alloy by using a nanoindentation technique. Results showed that the hardness and creep displacements of the nanocrystalline Mg–Gd–Y–Zr alloy decreased with increasing loading strain rate. That is, the nanocrystalline Mg–Gd–Y–Zr alloy showed negative strain rate sensitivity and its creep behavior also exhibited negative rate dependence. It was revealed that the enhanced twinning activities at higher loading strain rates resulted in reduced hardness and creep displacements. The dominant creep mechanism of the nanocrystalline Mg–Gd–Y–Zr alloy is discussed based on a work-of-indentation theory in this paper.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6846
Author(s):  
Haiyang Wang ◽  
Chuanjie Wang ◽  
Linfu Zhang ◽  
Gang Chen ◽  
Qiang Zhu ◽  
...  

The performance of clad foils in microforming deserves to be studied extensively, where the strain rate sensitivity of the clad foil concerning the forming performance is a crucial factor. In this paper, the strain rate sensitivity of the mechanical properties of coarse-grained (CG) Cu/Ni clad foils in the quasi-static strain rate range (ε˙=10−4 s−1~10−1 s−1) is explored by uniaxial tensile tests under different strain rates. The results show that the strength and ductility increase with strain rate, and the strain rate sensitivity m value is in the range of 0.012~0.015, which is three times the value of m for CG pure Cu. The fracture morphology shows that slip bands with different directions are entangled in localized areas near the interface layer. Molecular dynamics simulations demonstrate the formation of many edged dislocations at the Cu/Ni clad foils interface due to a mismatch interface. The improved ductility and strain rate sensitivity is attributed to the interaction and plugging of the edged dislocations with high density in the interface layer. Additionally, the influence of size effect on mechanical properties is consistently present in the quasi-static strain rate range. This paper helps to understand the strain rate sensitivity of CG clad foils and to develop clad foils in microforming processes.


Sign in / Sign up

Export Citation Format

Share Document