Epitope Mapping of a Bactericidal Monoclonal Antibody against the Factor H Binding Protein of Neisseria meningitidis

2009 ◽  
Vol 386 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Maria Scarselli ◽  
Francesca Cantini ◽  
Laura Santini ◽  
Daniele Veggi ◽  
Sara Dragonetti ◽  
...  
2016 ◽  
Vol 473 (24) ◽  
pp. 4699-4713 ◽  
Author(s):  
Enrico Malito ◽  
Paola Lo Surdo ◽  
Daniele Veggi ◽  
Laura Santini ◽  
Heather Stefek ◽  
...  

Factor H-binding protein (fHbp) is an important antigen of Neisseria meningitidis that is capable of eliciting a robust protective immune response in humans. Previous studies on the interactions of fHbp with antibodies revealed that some anti-fHbp monoclonal antibodies that are unable to trigger complement-mediated bacterial killing in vitro are highly co-operative and become bactericidal if used in combination. Several factors have been shown to influence such co-operativity, including IgG subclass and antigen density. To investigate the structural basis of the anti-fHbp antibody synergy, we determined the crystal structure of the complex between fHbp and the Fab (fragment antigen-binding) fragment of JAR5, a specific anti-fHbp murine monoclonal antibody known to be highly co-operative with other monoclonal antibodies. We show that JAR5 is highly synergic with monoclonal antibody (mAb) 12C1, whose structure in complex with fHbp has been previously solved. Structural analyses of the epitopes recognized by JAR5 and 12C1, and computational modeling of full-length IgG mAbs of JAR5 and 12C1 bound to the same fHbp molecule, provide insights into the spatial orientation of Fc (fragment crystallizable) regions and into the possible implications for the susceptibility of meningococci to complement-mediated killing.


Vaccine ◽  
2017 ◽  
Vol 35 (18) ◽  
pp. 2343-2350 ◽  
Author(s):  
Fenglin Shi ◽  
Aiyu Zhang ◽  
Bingqing Zhu ◽  
Yuan Gao ◽  
Li Xu ◽  
...  

Vaccine ◽  
2011 ◽  
Vol 29 (11) ◽  
pp. 2187-2192 ◽  
Author(s):  
Kedibone M. Mothibeli ◽  
Mignon du Plessis ◽  
Anne von Gottberg ◽  
Ellen Murphy ◽  
Susan K. Hoiseth ◽  
...  

2011 ◽  
Vol 48 (14) ◽  
pp. 1727
Author(s):  
S.J. Johnson ◽  
L. Newham ◽  
J. Caesar ◽  
R. Jones ◽  
K. Trivedi ◽  
...  

2011 ◽  
Vol 18 (6) ◽  
pp. 1002-1014 ◽  
Author(s):  
Jay Lucidarme ◽  
Lionel Tan ◽  
Rachel M. Exley ◽  
Jamie Findlow ◽  
Ray Borrow ◽  
...  

ABSTRACTNeisseria meningitidisremains a leading cause of bacterial sepsis and meningitis. Complement is a key component of natural immunity against this important human pathogen, which has evolved multiple mechanisms to evade complement-mediated lysis. One approach adopted by the meningococcus is to recruit a human negative regulator of the complement system, factor H (fH), to its surface via a lipoprotein, factor H binding protein (fHbp). Additionally, fHbp is a key antigen in vaccines currently being evaluated in clinical trials. Here we characterize strains ofN. meningitidisfrom several distinct clonal complexes which do not express fHbp; all strains were recovered from patients with disseminated meningococcal disease. We demonstrate that these strains have either a frameshift mutation in thefHbpopen reading frame or have entirely lostfHbpand some flanking sequences. No fH binding was detected to other ligands among thefHbp-negative strains. The implications of these findings for meningococcal pathogenesis and prevention are discussed.


2009 ◽  
Vol 77 (5) ◽  
pp. 2094-2103 ◽  
Author(s):  
Jutamas Shaughnessy ◽  
Lisa A. Lewis ◽  
Hanna Jarva ◽  
Sanjay Ram

ABSTRACT Both Neisseria meningitidis and Neisseria gonorrhoeae recruit the alternative pathway complement inhibitory protein factor H (fH) to their surfaces to evade complement-dependent killing. Meningococci bind fH via fH binding protein (fHbp), a surface-exposed lipoprotein that is subdivided into three variant families based on one classification scheme. Chimeric proteins that comprise contiguous domains of fH fused to murine Fc were used to localize the binding site for all three fHbp variants on fH to short consensus repeat 6 (SCR 6). As expected, fH-like protein 1 (FHL-1), which contains fH SCR 6, also bound to fHbp-expressing meningococci. Using site-directed mutagenesis, we identified histidine 337 and histidine 371 in SCR 6 as important for binding to fHbp. These findings may provide the molecular basis for recent observations that demonstrated human-specific fH binding to meningococci. Differences in the interactions of fHbp variants with SCR 6 were evident. Gonococci bind fH via their porin (Por) molecules (PorB.1A or PorB.1B); sialylation of lipooligosaccharide enhances fH binding. Both sialylated PorB.1B- and (unsialylated) PorB.1A-bearing gonococci bind fH through SCR 18 to 20; PorB.1A can also bind SCR 6, but only weakly, as evidenced by a low level of binding of FHL-1 relative to that of fH. Using isogenic strains expressing either meningococcal fHbp or gonococcal PorB.1B, we discovered that strains expressing gonococcal PorB.1B in the presence of sialylated lipooligosaccharide bound more fH, more effectively limited C3 deposition, and were more serum resistant than their isogenic counterparts expressing fHbp. Differences in fH binding to these two related pathogens may be important for modulating their individual responses to host immune attack.


Vaccine ◽  
2020 ◽  
Vol 38 (49) ◽  
pp. 7716-7727
Author(s):  
Jamie Findlow ◽  
Christopher D. Bayliss ◽  
Peter T. Beernink ◽  
Ray Borrow ◽  
Paul Liberator ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document