chimeric proteins
Recently Published Documents


TOTAL DOCUMENTS

387
(FIVE YEARS 70)

H-INDEX

48
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Ignacy Rzagalinski ◽  
Aliona Bogdanova ◽  
Bharath Kumar Raghuraman ◽  
Eric R. Geertsma ◽  
Lena Hersemann ◽  
...  

Absolute (molar) quantification of proteins provides the analytical rationale for system-level modelling of diverse molecular mechanisms. FastCAT method employs multiple short (<50 kDa) stable-isotope labeled chimeric proteins (CPs) composed of concatenated quantotypic (Q-) peptides representing the quantified proteins. Each CP also comprises scrambled sequences of reference (R-) peptides that relate its abundance to a single protein standard (BSA). FastCAT not only alleviates the need in purifying CP or using SDS-PAGE, but also improves the accuracy, precision and dynamic range of the absolute quantifications by grouping Q-peptides according to the expected abundance of target proteins. We benchmarked FastCAT against the reference method of MS Western and tested it in the direct molar quantifications of neurological markers in human cerebrospinal fluid at the low ng/mL level.


2021 ◽  
Author(s):  
Florian Patrick Bock ◽  
Anna Anchimiuk ◽  
Marie-Laure Diebold-Durand ◽  
Stephan Gruber

Chromosomes readily unlink from one another and segregate to daughter cells during cell division highlighting a remarkable ability of cells to organize long DNA molecules. SMC complexes mediate chromosome folding by DNA loop extrusion. In most bacteria, SMC complexes start loop extrusion at the ParB/parS partition complex formed near the replication origin. Whether they are recruited by recognizing a specific DNA structure in the partition complex or a protein component is unknown. By replacing genes in Bacillus subtilis with orthologous sequences from Streptococcus pneumoniae, we show that the three subunits of the bacterial Smc complex together with the ParB protein form a functional module that can organize and segregate chromosomes when transplanted into another organism. Using chimeric proteins and chemical cross-linking, we find that ParB binds to the Smc subunit directly. We map a binding interface to the Smc joint and the ParB CTP-binding domain. Structure prediction indicates how the ParB clamp presents DNA to the Smc complex to initiate DNA loop extrusion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3031
Author(s):  
Greta Labutytė ◽  
Simona Povilonienė ◽  
Eugenijus Šimoliūnas ◽  
Dovydas Gabrielaitis ◽  
Martynas Skapas ◽  
...  

We report on the construction of functionalized nanotubes based on tail sheath protein 041 from vB_KleM-RaK2 bacteriophage. The truncated 041 protein (041Δ200) was fused with fluorescent proteins GFP and mCherry or amidohydrolase YqfB. The generated chimeric proteins were successfully synthesized in E. coli BL21 (DE3) cells and self-assembled into tubular structures. We detected the fluorescence of the structures, which was confirmed by stimulated emission depletion microscopy. When 041Δ200GFP and 041Δ200mCherry were coexpressed in E. coli BL21 (DE3) cells, the formed nanotubes generated Förster resonance energy transfer, indicating that both fluorescent proteins assemble into a single nanotube. Chimeric 041Δ200YqfB nanotubes possessed an enzymatic activity, which was confirmed by hydrolysis of N4-acetyl-2′-deoxycytidine. The enzymatic properties of 041Δ200YqfB were similar to those of a free wild-type YqfB. Hence, we conclude that 041-based chimeric nanotubes have the potential for the development of delivery vehicles and targeted imaging and are applicable as scaffolds for biocatalysts.


2021 ◽  
pp. 106012
Author(s):  
Dharti K. Patel ◽  
Dhanya V. Menon ◽  
Darshan H. Patel ◽  
Gayatri Dave
Keyword(s):  

Author(s):  
Sophie Sluysmans ◽  
Isabelle Méan ◽  
Lionel Jond ◽  
Sandra Citi

PLEKHA5, PLEKHA6, and PLEKHA7 (WW-PLEKHAs) are members of the PLEKHA family of proteins that interact with PDZD11 through their tandem WW domains. WW-PLEKHAs contribute to the trafficking and retention of transmembrane proteins, including nectins, Tspan33, and the copper pump ATP7A, at cell-cell junctions and lateral membranes. However, the structural basis for the distinct subcellular localizations of PLEKHA5, PLEKHA6, and PLEKHA7 is not clear. Here we expressed mutant and chimeric proteins of WW-PLEKHAs in cultured cells to clarify the role of their structural domains in their localization. We found that the WW-mediated interaction between PLEKHA5 and PDZD11 is required for their respective association with cytoplasmic microtubules. The PH domain of PLEKHA5 is required for its localization along the lateral plasma membrane and promotes the lateral localization of PLEKHA7 in a chimeric molecule. Although the PH domain of PLEKHA7 is not required for its localization at the adherens junctions (AJ), it promotes a AJ localization of chimeric proteins. The C-terminal region of PLEKHA6 and PLEKHA7 and the coiled-coil region of PLEKHA7 promote their localization at AJ of epithelial cells. These observations indicate that the localizations of WW-PLEKHAs at specific subcellular sites, where they recruit PDZD11, are the result of multiple cooperative protein-lipid and protein-protein interactions and provide a rational basis for the identification of additional proteins involved in trafficking and sorting of WW-PLEKHAs.


2021 ◽  
pp. 2187-2196
Author(s):  
Aitbay K. Bulashev ◽  
Bakytkali K. Ingirbay ◽  
Kanatbek N. Mukantayev ◽  
Alfiya S. Syzdykova

Background and Aim: An accurate diagnosis of Brucella-infected animals is one of the critical measures in eradication programs. Conventional serological tests based on whole-cell (WC) antigens and detecting antibodies against pathogen-associated lipopolysaccharide might give false-positive results due to the cross-reactivity with other closely related bacteria. This study evaluated the serological potential of Brucella spp. chimeric outer membrane proteins (Omps) as antigens in an indirect enzyme-linked immunosorbent assay (i-ELISA). Materials and Methods: The chimeric gene constructs of the most immunodominant regions of Brucella Omps 25+31, 25+19, and 19+31 were cloned into the pET28a expression vectors and transformed into Escherichia coli BL21 (DE3). The serological potential of chimeric proteins compared with single recombinant Omps (rOmps)19, 25, and/or 31 were studied on blood serum samples of (i) a rabbit immunized with killed Brucella abortus 19WC, (ii) mice immunized with single rOmps, (iii) cows seropositive for brucellosis by rose Bengal test, and (iv) cattle naturally and/or experimentally infected with brucellosis. Results: E. coli BL21 actively produced Brucella chimeric rOmps, the concentration of which reached a maximum level at 6 h after isopropyl-β-D-1-thiogalactopyranoside stimulation. Target proteins were antigenic and expressed in an active state, as recognized by rabbit anti-B. abortus antibodies in an i-ELISA and western blotting. Murine antibodies against the single rOmps reacted with chimeric antigens, and conversely, antichimeric antibodies found their epitopes in single proteins. Brucella chimeric rOmps showed higher antigenicity in blood sera of seropositive cattle kept in the hotbed of the infection and/or experimentally challenged with brucellosis than single proteins. Conclusion: Brucella chimeric recombinant outer membrane proteins could be a potential antigen candidate for developing an ELISA test for accurate diagnosis of bovine brucellosis.


2021 ◽  
Author(s):  
Line MANCEAU ◽  
Julien RICHARD ALBERT ◽  
Pier-Luigi LOLLINI ◽  
Maxim V. C. GREENBERG ◽  
Pascale GILARDI-HEBENSTREIT ◽  
...  

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Both PAX-FOXO1s result in related cell transformation in animal models, but both mutations are associated with distinct pathological manifestations in patients. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 causes stronger de novo transactivation of its bound regions than PAX3-FOXO1, resulting in greater transcriptomic dynamics involving genes regulating cell shape and cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into M phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into S phase, and causes more genomic instabilities. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the transcriptional activities of PAX3-FOXO1 and PAX7-FOXO1. Furthermore, the identified pronounced deleterious effects of PAX7-FOXO1 provide an explanation for the low frequency of the translocation generating this factor in patients with rhabdomyosarcoma.


Author(s):  
Fahimeh Sadat Emami Mahmoudabadi ◽  
Atina Vakili ◽  
Shahram Nazarian ◽  
Jafar Amani ◽  
Seyed Latif Mousavi Gargari

Shigella and Salmonella cause serious problems in many subjects, including young children and the elderly, especially in developing countries. Chimeric proteins carrying immunogens increase immune response. In-silico tools are applied to design vaccine candidates. Invasion plasmid antigens D (ipaD) gene is one of the Shigella virulence factors. The N-terminal region of the IpaD plays a significant role in invading the host cell. Invasion protein H (invH) gene plays important role in bacterial adherence and entry into epithelial cells. A recombinant chimeric construct, containing IpaD and InvH was designed and used as a vaccine candidate against Shigella and Salmonella enteritidis. After bioinformatics assessments, the construct was designed, synthesized, and expressed in E.coli. Chimeric protein, IpaD, and InvH were purified with Ni-NTA chromatography. Purified proteins were confirmed with western blotting and then were injected into separate mice groups. The antibody titer was estimated with an enzyme-linked immunosorbent assay (ELISA). Mice were challenged with 10, 100, and 1000 LD50 of Salmonella, and the sereny test was performed for Shigella. The Codon adaptation index of the chimeric gene was increased to 0.84. Validation results showed that 97.9% of residues lie in the favored or additional allowed region of the Ramachandran plot. A significant antibody rise was observed in all test groups. The immunized mice with chimer and InvH could tolerate 100 LD50 of Salmonella. In the sereny test, the application of bacteria treated with immunized mice sera of both antigens showed no infection in Guinea pigs' eyes. The recombinant protein could protect animal models against Salmonella and Shigella and therefore can be considered as a suitable vaccine candidate against these two pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jongjin Park ◽  
Jiyoung Yoon ◽  
Daekee Kwon ◽  
Mi-Jung Han ◽  
Sunmee Choi ◽  
...  

AbstractEfforts to improve CRISPR-Cas9 genome editing systems for lower off-target effects are mostly at the cost of its robust on-target efficiency. To enhance both accuracy and efficiency, we created chimeric SpyCas9 proteins fused with the 5′-to-3′ exonuclease Recombination J (RecJ) or with GFP and demonstrated that transfection of the pre-assembled ribonucleoprotein of the two chimeric proteins into human or plant cells resulted in greater targeted mutagenesis efficiency up to 600% without noticeable increase in off-target effects. Improved activity of the two fusion proteins should enable editing of the previously hard-to-edit genes and thus readily obtaining the cells with designer traits.


2021 ◽  
Vol 4 (8) ◽  
pp. 639-640
Author(s):  
Amanda G. Jarvis
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document