scholarly journals Structure Determination of the Nuclear Pore Complex with Three-Dimensional Cryo electron Microscopy

2016 ◽  
Vol 428 (10) ◽  
pp. 2001-2010 ◽  
Author(s):  
Alexander von Appen ◽  
Martin Beck
1993 ◽  
Vol 122 (1) ◽  
pp. 1-19 ◽  
Author(s):  
CW Akey ◽  
M Radermacher

The nuclear pore complex spans the nuclear envelope and functions as a macromolecular transporter in the ATP-dependent process of nucleocytoplasmic transport. In this report, we present three dimensional (3D) structures for both membrane-associated and detergent-extracted Xenopus NPCs, imaged in frozen buffers by cryo-electron microscopy. A comparison of the differing configurations present in the 3D maps suggests that the spokes may possess an intrinsic conformational flexibility. When combined with recent data from a 3D map of negatively stained NPCs (Hinshaw, J. E., B. O. Carragher, and R. A. Milligan. 1992. Cell. 69:1133-1141), these observations suggest a minimal domain model for the spoke-ring complex which may account for the observed plasticity of this assembly. Moreover, lumenal domains in adjacent spokes are interconnected by radial arm dimers, forming a lumenal ring that may be responsible for anchoring the NPC within the nuclear envelope pore. Importantly, the NPC transporter is visualized as a centrally tapered cylinder that spans the entire width of the NPC, in a direction normal to the nuclear envelope. The central positioning, tripartite structure, and hollow nature of the transporter suggests that it may form a macromolecular transport channel, with a globular gating domain at each end. Finally, the packing of the transporter within the spokes creates a set of eight internal channels that may be responsible, in part, for the diffusion of ions and small molecules across the nuclear envelope.


2021 ◽  
Vol 27 (S1) ◽  
pp. 1134-1134
Author(s):  
Baldeep Khare ◽  
Thomas Klose ◽  
Qianglin Fang ◽  
Michael Rossmann ◽  
Richard Kuhn

2020 ◽  
Author(s):  
Swetha Vijayakrishnan ◽  
Marion McElwee ◽  
Colin Loney ◽  
Frazer Rixon ◽  
David Bhella

AbstractCryo electron microscopy (cryo-EM), a key method for structure determination involves imaging purified material embedded in vitreous ice. Images are then computationally processed to obtain three-dimensional structures at atomic resolution. There is increasing interest in extending structural studies by cryo-EM into the cell, where biological structures and processes may be imaged in context. The limited penetrating power of electrons prevents imaging of thick specimens (>500 nm) however. Cryo-sectioning methods employed to overcome this are technically challenging, subject to artefacts or involve specialised equipment of limited availability. Here we describe the first structure of herpesvirus capsids determined by sub-tomogram averaging from nuclei of eukaryotic cells, achieved by cryo-electron tomography (cryo-ET) of re-vitrified cell sections prepared using the Tokuyasu method. Our reconstructions reveal that the capsid associated tegument complex is present on capsids prior to nuclear egress. We show that this approach to cryogenic imaging of cells is suited to both correlative light/electron microscopy and 3D structure determination.


1982 ◽  
Vol 93 (1) ◽  
pp. 63-75 ◽  
Author(s):  
P N Unwin ◽  
R A Milligan

The three-dimensional structure of the nuclear pore complex has been determined to a resolution of approximately 90 A by electron microscopy using nuclear envelopes from Xenopus oocytes. It is shown to be an assembly of several discrete constituents arranged with octagonal symmetry about a central axis. There are apparent twofold axes perpendicular to the octad axis which suggest that the framework of the pore complex is constructed from two equal but oppositely facing halves. The half facing the cytoplasm is in some instances decorated by large particles, similar in appearance and size to ribosomes.


2014 ◽  
Vol 106 (2) ◽  
pp. 601a
Author(s):  
Alberto Bartesaghi ◽  
Jason Pierson ◽  
Prashant Rao ◽  
Soojay Banerjee ◽  
Mario Borgnia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document