scholarly journals Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis

Cell Research ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 520-531 ◽  
Author(s):  
Gaoxingyu Huang ◽  
Yanqing Zhang ◽  
Xuechen Zhu ◽  
Chao Zeng ◽  
Qifan Wang ◽  
...  
Author(s):  
Gaoxingyu Huang ◽  
Yanqing Zhang ◽  
Xuechen Zhu ◽  
Chao Zeng ◽  
Qifan Wang ◽  
...  

Nuclear pore complex (NPC) exhibits structural plasticity and has only been characterized at local resolutions of up to 15 Å for the cytoplasmic ring (CR). Here we present a single-particle cryo-electron microscopy (cryo-EM) structure of the CR from Xenopus laevis NPC at average resolutions of 5.5-7.9 Å, with local resolutions reaching 4.5 Å. Improved resolutions allow identification and placement of secondary structural elements in the majority of the CR components. The two Y complexes in each CR subunit interact with each other and associate with those from flanking subunits, forming a circular scaffold. Within each CR subunit, the Nup358-containing region wraps around the stems of both Y complexes, likely stabilizing the scaffold. Nup205 connects the short arms of the two Y complexes and associates with the stem of a neighbouring Y complex. The Nup214-containing region uses an extended coiled-coil to link Nup85 of the two Y complexes and protrudes into the axial pore of the NPC. These previously uncharacterized structural features reveal insights into NPC assembly.


2021 ◽  
Author(s):  
Gaoxingyu Huang ◽  
Xiechao Zhan ◽  
Chao Zeng ◽  
Ke Liang ◽  
Xuechen Zhu ◽  
...  

Nuclear pore complex (NPC) mediates nucleocytoplasmic shuttling. Here we present single-particle cryo-electron microscopy (cryo-EM) structure of the inner ring (IR) subunit from Xenopus laevis NPC at an average resolution of 4.4 Å. The symmetric IR subunit comprises a cytoplasmic half and a nuclear half. A homo-dimer of Nup205 resides at the center of the IR subunit, flanked by two molecules of Nup188. Four molecules of Nup93 each places an extended helix into the axial groove of Nup205 or Nup188, together constituting the central scaffold. The channel nucleoporin heterotrimer (CNT) of Nup54/58/62 is anchored on the central scaffold. Six Nup155 molecules interact with the central scaffold and together with the NDC1-ALADIN hetero-dimers anchor the IR subunit to the nuclear envelope and to outer rings. The scarce inter-subunit contacts may allow sufficient latitude in conformation and diameter of the IR. Our structure of vertebrate IR reveals key insights that are functionally important.


Sign in / Sign up

Export Citation Format

Share Document