scholarly journals Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study

Author(s):  
Julie Choisne ◽  
Jean-Marc Valiadis ◽  
Christophe Travert ◽  
Sami Kolta ◽  
Christian Roux ◽  
...  
Author(s):  
Y Luo ◽  
Z Ferdous ◽  
W D Leslie

To more accurately assess osteoporotic hip fracture risk in a specific patient, a dual-energy X-ray absorptiometry (DXA)-based finite element model was constructed from the patient’s femur DXA image. The outermost contour of the femur bone segmented from the DXA image was used to generate a finite element mesh. Bone mechanical properties, such as Young’s modulus, are correlated with areal bone mineral density (BMD) captured in the DXA image. A quasi-static loading condition representing a sideway fall was applied to the finite element model. Three fracture risk indices were introduced and expressed as ratios of internal forces caused by impact forces occurring in sideway fall to bone ultimate cross-section strength at the three critical locations, i.e. the femoral neck, the intertrochanteric region, and the subtrochanteric region. The proposed finite element modelling procedure was validated against six representative clinical cases extracted from the Manitoba BMD database, where initial and follow-up DXA images have been taken to monitor longitudinal variation of areal BMD in individual patients. It was found from the clinical validation that variations in the proposed fracture risk indices have the same trends as those indicated by the conventional areal BMD and T-score. In addition, by the three proposed fracture risk indices it is possible to further identify the specific fracture location. It was also found that for the same subject, the variations in the three fracture risk indices have quite different magnitudes, with intertrochanteric region the largest and subtrochanteric region the smallest, which is probably owing to the different content of trabecular and cortical bones in the three regions. With further development, it is promising that the proposed DXA-based finite element model will be a useful tool for accurate assessment of osteoporosis development and for treatment monitoring.


2020 ◽  
Vol 27 (4) ◽  
pp. 120-129
Author(s):  
Krzysztof Woloszyk ◽  
Yordan Garbatov ◽  
Jakub Kowalski ◽  
Leszek Samson

AbstractThe objective of this study is to analyse the behaviour of compressed stiffened plates of different slenderness using experimental and numerical methods. The presented results are part of a long-term project to investigate the ultimate strength of geometrically imperfect structures subjected to different degradation phenomena, including corrosion degradation and locked cracks. Several specimens were subjected to a uniaxial compressive force, and the most important quantities related to the structural behaviour were captured and analysed. A finite element model, accounting for material and geometrical nonlinearities and initial geometrical imperfections, was developed using the commercial software ANSYS. The residual welding-induced stresses were measured in the middle cross-section for two specimens. The initial imperfection was identified by employing a close-range photogrammetry approach. It was concluded that the numerical analyses, based on the finite element model, predict the ultimate strength of stiffened plates accurately, although some deviations were also observed. The detailed analysis with the indication of possible uncertainty is presented, and several conclusions are derived.


Sign in / Sign up

Export Citation Format

Share Document