Density functional theory-based analyses on selective gas separation by β-PVDF-supported ionic liquid membranes

Author(s):  
Ranjini Sarkar ◽  
Tarun Kumar Kundu
2015 ◽  
Vol 2 (4) ◽  
pp. 290-302 ◽  
Author(s):  
Hanyeh Karkhanechi ◽  
Saeide Salmani ◽  
Morteza Asghari

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 359
Author(s):  
László Koók ◽  
Piroska Lajtai-Szabó ◽  
Péter Bakonyi ◽  
Katalin Bélafi-Bakó ◽  
Nándor Nemestóthy

Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]− and [NTf2]− anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]− containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]− anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.


2009 ◽  
Vol 328 (1-2) ◽  
pp. 81-85 ◽  
Author(s):  
Antonia P. de los Ríos ◽  
Francisco J. Hernández-Fernández ◽  
Hugo Presa ◽  
Demetrio Gómez ◽  
Gloria Víllora

Sign in / Sign up

Export Citation Format

Share Document