The influence of the magnetic configuration on the charge current generated by the temperature gradient in the double planar ferromagnetic tunnel junctions

Author(s):  
M. Wilczyński
2006 ◽  
Vol 941 ◽  
Author(s):  
Christian Heiliger ◽  
Peter Zahn ◽  
Ingrid Mertig

ABSTRACTThe transport properties of planar Fe/MgO/Fe tunnel junctions are investigated theoretically by means of ab initio calculations. In particular, the k||-resolved conductance in dependence on the barrier thickness, the interface structure, and the magnetic configuration is studied. The results show that the number of states in the k||-space contributing significantly to the overall current is decreasing with increasing barrier thickness as expected. In contrast to simple parabolic band models the contribution of states in the vicinity of k||=0, however, is only involved for a few considered configurations of the system Fe/MgO/Fe.


Author(s):  
Youjun Hu ◽  
Matthew T. Miecnikowski ◽  
Yang Chen ◽  
Scott E. Parker

The feasibility of using full ion kinetics, instead of gyrokinetics, in simulating low-frequency Ion-Temperature-Gradient (ITG) instabilities in tokamaks has recently been demonstrated by Sturdevant et al. [Physics of Plasmas 24, 081207 (2017)]. In that work, a variational integrator was developed to integrate the full orbits of ions in toroidal geometry, which proved to be accurate in capturing both the short-time scale cyclotron motion and long time scale drift motion. The present work extends that work in three aspects. First, we implement a relatively simple full orbit integrator, the Boris integrator, and demonstrate that the accuracy of this integrator is also sufficient for simulation of ITG instabilities. Second, the equilibrium magnetic configuration is extended to general toroidal configuration specified numerically, enabling simulation of realistic equilibria reconstructed from tokamak experiments. Third, we extend that work to the nonlinear regime and investigate the nonlinear saturation of ITG instabilities. To verify the new numerical implementation of the orbit integrator and magnetic configuration, the linear electrostatic ITG frequency and growth rate are compared with those given in Sturdevant's work and good agreement is found.


2002 ◽  
Vol 12 (3) ◽  
pp. 145-148
Author(s):  
C. Jorel ◽  
P. Feautrier ◽  
J.-C. Villégier ◽  
A. Benoit

Sign in / Sign up

Export Citation Format

Share Document